
Oracle ® Application Server

Developer’s Guide: PL/SQL and ODBC Applications

Release 4.0.8.1

September 1999

Part No. A66958-02

Oracle Application Server Release 4.0.8.1 Developer’s Guide: PL/SQL and ODBC Applications

Part No. A66958-02

Copyright © 1996, 1999, Oracle Corporation. All rights reserved.

Primary Author: Alka Srivastava

Contributors: Sanjay Patil, Scott Christley, Jay Mojnidar

The programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the programs are used for such
purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the programs.

The programs (which include both the software and documentation) contain proprietary information of Oracle
Corporation; they are provided under a license agreement containing restrictions on use and disclosure and are
also protected by copyright, patent, and other intellectual and industrial property laws. Reverse engineering,
disassembly, or decompilation of the programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in the
documentation, please report them to us in writing. Oracle Corporation does not warrant that this document is
error free. Except as may be expressly permitted in your license agreement for these programs, no part of these
programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Oracle Corporation.

If the programs are delivered to the U.S. Government or anyone licensing or using the programs on behalf of
the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial computer
software" and use, duplication, and disclosure of the programs, including documentation, shall be subject to
the licensing restrictions set forth in the applicable Oracle license agreement. Otherwise, programs delivered
subject to the Federal Acquisition Regulations are "restricted computer software" and use, duplication, and
disclosure of the programs shall be subject to the restrictions in FAR 52.227-19, Commercial Computer Software
- Restricted Rights (June, 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

Oracle is a registered trademark, and the Oracle logo, NLS*WorkBench, Pro*COBOL, Pro*FORTRAN,
Pro*Pascal, SQL*Loader, SQL*Module, SQL*Net, SQL*Plus, Oracle7, Oracle Server, Oracle Server Manager,
Oracle Call Interface, Oracle7 Enterprise Backup Utility, Oracle TRACE, Oracle WebServer, Oracle Web
Application Server, Oracle Application Server, Oracle Network Manager, Secure Network Services, Oracle
Parallel Server, Advanced Replication Option, Oracle Data Query, Cooperative Server Technology, Oracle
Toolkit, Oracle MultiProtocol Interchange, Oracle Names, Oracle Book, Pro*C, and PL/SQL are trademarks or
registered trademarks of Oracle Corporation. All other company or product names mentioned are used for
identification purposes only and may be trademarks of their respective owners.

Contents

Preface ... vii

Part I PL/SQL Cartridge

1 PL/SQL Cartridge Overview

Configuration Information.. 1-1
Communication Path.. 1-2
POST and GET Methods ... 1-4

2 Tutorial

1. Creating and Loading the Stored Procedure onto the Database ... 2-2
2. Creating an Application and its Components... 2-3
3. Reloading ... 2-5
4. Creating an HTML Page to Invoke the Application .. 2-6

3 Adding and Invoking PL/SQL Applications

Adding PL/SQL Applications .. 3-1
Adding Applications and Cartridges .. 3-2
Creating Database Access Descriptors (DADs) ... 3-3
Starting and Stopping the Application Server ... 3-5
Adding Cartridges to an Existing Application .. 3-5

Configuring PL/SQL Applications .. 3-7
Application Configuration .. 3-7
Cartridge Configuration .. 3-7
iii

Invoking a PL/SQL Cartridge ... 3-8
URL Format ... 3-8
Caching Procedure Descriptions .. 3-10

Overloaded Procedures.. 3-10
Overloading and PL/SQL Arrays .. 3-11

Variables with Multiple Values.. 3-12
Flexible Parameter Passing ... 3-16
Positional Parameters ... 3-17
Executing SQL Files.. 3-18

Location of PL/SQL Source Files ... 3-19
Parameters ... 3-19

Life Cycle of the PL/SQL Cartridge... 3-20
Initialization... 3-20
Authorization .. 3-20
Execution.. 3-20
Shutdown... 3-21

4 Using the PL/SQL Web Toolkit

Common Schema .. 4-1
PL/SQL Web Toolkit Installation ... 4-2
Packages in the Toolkit .. 4-4

htp and htf.. 4-5
owa_image... 4-6
owa_opt_lock... 4-6
owa_custom... 4-6
owa_content... 4-7

Conventions for Parameter Names in the Toolkit .. 4-8
Attributes to HTML Tags... 4-8
PL/SQL Cartridge and Applets... 4-8
Sessions/Cookies... 4-9
LONG Data Type .. 4-10
Inter-Cartridge Exchange (ICX) .. 4-10
Extensions to the htp and htf Packages .. 4-10
File Upload and Download ... 4-11

Upload .. 4-11
iv

Download .. 4-14
String Matching and Manipulation .. 4-17

owa_pattern.match... 4-17
owa_pattern.change ... 4-18

5 Authentication and Security

Dynamic Username/Password Authentication ... 5-1
Dynamic Username/Password and the Basic_Oracle Scheme ... 5-2
PL/SQL Cartridge and Authentication Server Schemes ... 5-2
Custom Authentication.. 5-4

OWA_SEC.GLOBAL.. 5-5
OWA_SEC.PER_PACKAGE ... 5-6
OWA_SEC.CUSTOM ... 5-7

6 Transactions

Mechanics of Transaction Service.. 6-1
Example... 6-3

7 Miscellaneous

Supported Data Types.. 7-1
NLS Extensions ... 7-1
Upgrading PL/SQL Cartridge from 3.x to 4.0 .. 7-3

8 Troubleshooting

Problems with Invoking Your PL/SQL Application .. 8-1
Looking at Error Messages Generated by the Database ... 8-1
Unhandled Exceptions ... 8-2
Looking at the HTML Generated by Your PL/SQL Application ... 8-2
Tracing Levels .. 8-4
Error-Reporting Levels .. 8-5

Part II ODBC Cartridge
v

9 ODBC Cartridge Overview

Review of Cartridge Architecture .. 9-1
Supported Data Sources .. 9-2

10 Using the ODBC Cartridge

Invoking the ODBC Cartridge ... 10-1
Special Usage Considerations .. 10-2

11 Specifying Modes and Datatypes

Specifying a Request Mode .. 11-1
Request Mode Parameters... 11-1
Execute Mode .. 11-3
TablePrint Mode ... 11-3
StringPrint Mode .. 11-4

Specifying Datatypes ... 11-4

Index
vi

Preface

Audience
This book is intended for people who develop Web applications using the PL/SQL
and ODBC cartridges of Oracle Application Server 4.0.

The Oracle Application Server Documentation Set
This table lists the Oracle Application Server documentation set.

Title of Book Part No.

Oracle Application Server 4.0.8 Documentation Set A66971-03

Oracle Application Server Overview and Glossary A60115-03

Oracle Application Server Installation Guide for Sun SPARC Solaris 2.x A58755-03

Oracle Application Server Installation Guide for Windows NT A58756-03

Oracle Application Server Administration Guide A60172-03

Oracle Application Server Security Guide A60116-03

Oracle Application Server Performance and Tuning Guide A60120-03

Oracle Application Server Developer’s Guide: PL/SQL and ODBC Applications A66958-02

Oracle Application Server Developer’s Guide: JServlet Applications A73043-01

Oracle Application Server Developer’s Guide: LiveHTML and Perl Applications A66960-02

Oracle Application Server Developer’s Guide: EJB, ECO/Java and CORBA Applications A69966-01

Oracle Application Server Developer’s Guide: C++ CORBA Applications A70039-01

Oracle Application Server PL/SQL Web Toolkit Reference A60123-03

Oracle Application Server PL/SQL Web Toolkit Quick Reference A60119-03
 vii

Conventions
This table lists the typographical conventions used in this manual.

The term “Oracle Server” refers to the database server product from Oracle Corpo-
ration.

The term “oracle” refers to an executable or account by that name.

The term “oracle” refers to the owner of the Oracle software.

Oracle Application Server JServlet Toolkit Reference A73045-01

Oracle Application Server JServlet Toolkit Quick Reference A73044-01

Oracle Application Server Cartridge Management Framework A58703-03

Oracle Application Server 4.0.8.1 Release Notes A66106-04

Convention Example Explanation

bold oas.h
owsctl
wrbcfg
www.oracle.com

Identifies file names,
utilities,
processes,
and URLs

italics file1 Identifies a variable in text; replace this place
holder with a specific value or string.

angle brackets <filename> Identifies a variable in code; replace this place
holder with a specific value or string.

courier owsctl start wrb Text to be entered exactly as it appears. Also
used for functions.

square brackets [-c string]

[on|off]

Identifies an optional item.

Identifies a choice of optional items, each sep-
arated by a vertical bar (|), any one option
can be specified.

braces {yes|no} Identifies a choice of mandatory items, each
separated by a vertical bar (|).

ellipses n,... Indicates that the preceding item can be
repeated any number of times.

Title of Book Part No.
viii

Technical Support Information
Oracle Global Support can be reached at the following numbers:

■ In the USA: Telephone: 1.650.506.1500

■ In Europe: Telephone: +44 1344 860160

■ In Asia-Pacific: Telephone: +61. 3 9246 0400

Please prepare the following information before you call, using this page as a check-
list:

❏ your CSI number (if applicable) or full contact details, including any special
project information

❏ the complete release numbers of the Oracle Application Server and associated
products

❏ the operating system name and version number

❏ details of error codes and numbers and descriptions. Please write these down
as they occur. They are critical in helping WWCS to quickly resolve your prob-
lem.

❏ a full description of the issue, including:

■ What - What happened? For example, the command used and its result.

■ When -When did it happen? For example, during peak system load, or
after a certain command, or after an operating system upgrade.

■ Where -Where did it happen? For example, on a particular system or
within a certain procedure or table.

■ Extent - What is the extent of the problem? For example, production sys-
tem unavailable, or moderate impact but increasing with time, or minimal
impact and stable.

❏ Keep copies of any trace files, core dumps, and redo log files recorded at or
near the time of the incident. WWCS may need these to further investigate
your problem. For a list of trace and log files, see “Configuration and Log Files”
in the Administration Guide.

For installation-related problems, please have the following additional information
available:

❏ listings of the contents of $ORACLE_HOME (Unix) or %ORACLE_HOME%
(NT) and any staging area, if used.
ix

❏ installation logs (install.log, sql.log, make.log, and os.log) typically stored in
the $ORACLE_HOME/orainst (Unix) or %ORACLE_HOME%\orainst (NT)
directory.

Documentation Sales and Client Relations
In the United States:

■ To order hardcopy documentation, call Documentation Sales: 1.800.252.0303.

■ For shipping inquiries, product exchanges, or returns, call Client Relations:
1.650.506.1500.

In the United Kingdom:

■ To order hardcopy documentation, call Oracle Direct Response:
+44 990 332200.

■ For shipping inquiries and upgrade requests, call Customer Relations:
+44 990 622300.
x

Reader’s Comment Form

Oracle Application Server Developer’s Guide: PL/SQL and ODBC Applications

Part No. A66958-02
Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have suggestions for improvement, please indicate the topic, chapter, and
page number below:

Please send your comments to:

Oracle Application Server Documentation Manager
Oracle Corporation
500 Oracle Parkway
Redwood Shores, CA 94065

If you would like a reply, please provide your name, address, and telephone number below:

Thank you for helping us improve our documentation.
xi

xii

Part I

PL/SQL Cartridge

Oracle Application Server Developer’s Guide: PL/SQL and ODBC Applications

PL/SQL Cartridge Ove
1

PL/SQL Cartridge Overview

The PL/SQL cartridge provides an environment that enables users to use their
browsers to invoke PL/SQL procedures stored in Oracle databases. The stored pro-
cedures can retrieve data from tables in the database, and generate HTML pages
that include the data to return to the client browser.

PL/SQL is Oracle’s procedural language extension to SQL, the standard data
access language for relational databases.

Contents
■ Configuration Information

■ Communication Path

■ POST and GET Methods

Configuration Information
The PL/SQL cartridge enables you to build applications that allow users to run
stored procedures in Oracle databases. You provide the cartridge with configura-
tion information as shown in Figure 1–1.
rview 1-1

Communication Path
Figure 1–1 PL/SQL cartridge configuration information

Each PL/SQL cartridge is associated with a database access descriptor (DAD),
which is a named set of configuration values used for database access. A DAD spec-
ifies information, such as:

■ The database name or the SQL*Net V2 service name

■ The ORACLE_HOME directory

■ NLS configuration information, such as language, sort type, and date language

You can also specify username and password information in a DAD; if they are not
specified, the user will be prompted to enter a username and password when the
URL is invoked.

The database connection information is placed in DADs so that multiple cartridges
can use the same DAD. This enables you to define a DAD for each database to
which you want to connect, since it is the DAD that specifies the database. You
need different PL/SQL cartridges if you want to return different levels of error
information or different transaction parameters.

Communication Path
A PL/SQL cartridge is also associated with a virtual path. You use this virtual path
to invoke the PL/SQL cartridge. The URL can also contain values for any parame-
ters required by the stored procedure. Figure 1–2 shows the parts of a URL:

Note to 3.0 Users: In Oracle Application Server 4.0, the PL/SQL
agent concept is no longer used. The configuration information in
PL/SQL agents has been moved to the cartridge itself.

PL/SQL cartridge

- Virtual path
- Database Access Descriptor
- Level of error messages to return
- Whether or not the cartridge is protected

Database name
NLS information
Username
Password

- Name
1-2 Oracle Application Server Developer’s Guide: PL/SQL and ODBC Applications

Communication Path
Figure 1–2 Breakdown of a URL for a PL/SQL cartridge

You group one or more PL/SQL cartridges, each with its own configuration values,
into an “application.” Applications enable you to manage the set of cartridges as a
whole, because the cartridges will be running within the same cartridge server pro-
cess. For example, you can stop the cartridges by stopping the cartridge servers,
configure the logging level for all cartridges in an application, and specify the num-
ber of instances of each cartridge that can run in a process.

The following sequence of steps takes place when Oracle Application Server
receives a request for a PL/SQL cartridge (Figure 1–3):

1. The listener receives a request from a client, and determines who should han-
dle it. In this case, it forwards the request to the web request broker (WRB)
because the request is for a cartridge.

2. From the virtual path, the WRB determines the PL/SQL cartridge that should
handle the request, and sends the request to a cartridge server that is running
the application.

3. In the cartridge server, the PL/SQL cartridge uses the DAD’s configuration val-
ues to determine which database to connect and how to set up the PL/SQL cli-
ent configuration.

4. The PL/SQL cartridge connects to the database, prepares the call parameters,
and invokes the procedure in the database.

5. The procedure generates an HTML page, which can include dynamic data
accessed from tables in the database as well as static data.

6. The output from the procedure is returned via the response buffer back to the
PL/SQL cartridge and the client.

http://www.acme.com/appname/cartname/get_emp?fname=chris

Domain Parameter for
procedure

Virtual path for a
PL/SQL cartridge procedure

Stored
PL/SQL Cartridge Overview 1-3

POST and GET Methods
Figure 1–3 Connecting to an Oracle database from a PL/SQL cartridge

The stored procedure that the cartridge invokes should return HTML data back to
the client. To simplify this task, the PL/SQL cartridge comes with the PL/SQL Web
Toolkit, which is a set of packages that you can use in your stored procedure to get
information about the request, construct HTML tags, and return header informa-
tion to the client. You install the toolkit in a common schema so that all users can
access it.

To configure PL/SQL cartridges and DADs, use the Oracle Application Server Man-
ager, which is a set of HTML forms. Use these forms to enter configuration informa-
tion, such as virtual paths for the PL/SQL cartridge, the SQL*Net V2 service name
for the DAD, and the error reporting.

When designing your applications, you must consider security issues. You have to
design your application such that unauthorized users do not have access to the
application, and authorized users can run the application only in the proper con-
text. See Chapter 5, “Authentication and Security” for details.

POST and GET Methods
POST and GET methods in the HTTP protocol instruct browsers how to pass
parameter data (usually in the form of name-value pairs) to applications. The
parameter data are usually generated by HTML forms.

Oracle Application Server applications can use either method. The method that you
use is as secure as the underlying transport protocol (http or https).

When you use the POST method, parameters are passed in the request body, and
when you use the GET method, parameters are passed using the query string.
These methods are described in the HTTP 1.1 specification, which is available at the
W3C web site, http://www.w3.org/Protocols/HTTP/1.1/draft-ietf-http-v11-spec-rev-
01.txt.

The limitation of the GET method is that the length of the value in a name-value
pair cannot exceed the maximum length for the value of an environment variable,
1-4 Oracle Application Server Developer’s Guide: PL/SQL and ODBC Applications

POST and GET Methods
as imposed by the underlying operating system. In addition, operating systems
have a limit on how many environment variables you can define.

Generally, if you are passing large amounts of parameter data to the server, you
should use the POST method instead.
PL/SQL Cartridge Overview 1-5

POST and GET Methods
1-6 Oracle Application Server Developer’s Guide: PL/SQL and ODBC Applications

Tu
2

Tutorial

This section provides a step-by-step guide on creating and invoking a simple appli-
cation that displays the contents of a database table as an HTML table. The applica-
tion consists of one PL/SQL cartridge. The cartridge invokes a stored procedure
that calls functions and procedures defined in the PL/SQL Web Toolkit.

This tutorial steps you through the following tasks:

1. Creating and Loading the Stored Procedure onto the Database

2. Creating an Application and its Components

3. Reloading

4. Creating an HTML Page to Invoke the Application

This tutorial assumes the following:

■ You can log in as the “admin” user for Oracle Application Server. This is
required because you will be adding new settings to the server configuration.

■ The database to which you will be connecting already has the PL/SQL Web
Toolkit installed. See “PL/SQL Web Toolkit Installation” on page 4-2.

■ You have the “scott” schema in your database. The PL/SQL cartridge logs into
the database using scott/tiger as the username and password. If you do not
have the “scott” schema, you can use an existing schema on your database, or
you can create the “scott” schema using the “CREATE SCHEMA” command.

A schema can be thought of as a user account: it is a collection of database
objects such as tables, views, procedures, and functions, and each object in the
schema can access other objects in the same schema.
torial 2-1

1. Creating and Loading the Stored Procedure onto the Database
1. Creating and Loading the Stored Procedure onto the Database
The stored procedure that the application invokes is current_users (defined
below). The procedure retrieves the contents of the all_users table and formats it
as an HTML table.

To create the stored procedure, save the text of the procedure in a file called
current_users.sql, and then run Oracle Server Manager to read and execute the
statements in the file.

1. Type the following lines and save it in a file called current_users.sql. The
current_users procedure retrieves the contents of the all_users table and
formats it as an HTML table.

create or replace procedure current_users
AS

ignore boolean;
BEGIN

htp.htmlopen;
htp.headopen;
htp.title('Current Users');
htp.headclose;
htp.bodyopen;
htp.header(1, 'Current Users');
ignore := owa_util.tablePrint('all_users');
htp.bodyclose;
htp.htmlclose;

END;
/
show errors

This procedure uses functions and procedures from the htp and owa_util
packages to generate the HTML page. For example, the htp.htmlopen proce-
dure generates the string <html> , and htp.title('Current Users') gen-
erates <title>Current Users</title> .

The owa_util.tablePrint function queries the specified database table, and for-
mats the contents as an HTML table.

2. Start up Server Manager in line mode. ORACLE_HOME is the directory that
contains the Oracle database files.

prompt> $ORACLE_HOME/bin/svrmgrl

3. Connect to the database as “scott”. The password is “tiger”.

SVRMGR>connect scott/tiger
2-2 Oracle Application Server Developer’s Guide: PL/SQL and ODBC Applications

2. Creating an Application and its Components
4. Load the current_users stored procedure from the current_users.sql file.
You need to provide the full path to the file if you started up Server Manager
from a directory different than the one containing the current_users.sql file.

SVRMGR>@
Name of script file: current_users.sql

5. Exit Server Manager.

SVRMGR>exit

2. Creating an Application and its Components
When you create an application, you also create its components: PL/SQL cartridges
and DADs (database access descriptor). You create these components using the Ora-
cle Application Server Manager administration forms.

1. Start up your browser and display the top-level administration page for Oracle
Application Server. You should see “OAS Sites” at the top of the left frame.

2. Click to display the sites.

3. Click the next to a site name to display the components on the site. You
should see “HTTP Listeners”, “Oracle Application Server”, and “Applications”.

4. Click “Applications” to display the applications in the right frame. Do not click
the next to Applications because you will see a list of applications for the
site in the left frame, instead of Applications in the right frame.

5. On the applications page in the right frame, click . The Add Application
dialog opens.

6. In the Add Application dialog:

■ Application Type: select PLSQL.

■ Configure Mode: select Manually, which enables you to enter configuration
data using dialog boxes. The other option, From File, assumes that you
have already entered the configuration data for the application in a file.

■ Click Apply.

The Add Application dialog box appears on the screen.

7. In the Add Application dialog:

■ Application Name: enter “simpleApp1”. This name is used to identify your
application.

+

+

+

Tutorial 2-3

2. Creating an Application and its Components
■ Display Name: enter “simpleApp1”. This name is used in the administra-
tion forms.

■ Application Version: enter “1.0”.

■ Click Apply.

When you click Apply, you get a Success dialog box, which contains a but-
ton that enables you to add cartridges to the application.

8. In the Success dialog box, click the Add Cartridges to Application button. This
displays the Add PLSQL Cartridge dialog.

9. In the Add PLSQL Cartridge dialog:

■ Cartridge Name: enter “cart1”. This name is used to identify your PL/SQL
cartridge in your “simpleApp1” application.

■ Display Name: enter “cart1”. This name is used in the administration
forms.

■ Virtual Path: enter /simpleApp1/cart1 as the virtual path for your PL/SQL
cartridge.

■ Physical Path: this field shows %ORAWEB_HOME%/bin as the physical
path. Leave this field as it is.

■ Click the Create New DAD button. The Database Access Descriptor dialog
box appears on the screen. A DAD specifies connection information such as
the database to which you want to connect, and the username and pass-
word to use to log into the database. Users will use this same DAD later to
run the stored procedure.

10. In the Database Access Descriptor dialog:

■ DAD Name: enter “scott”.

■ Database User: enter “scott”.

■ Database User Password and Confirm Password: enter “tiger”.

■ Database Location (Host): enter the machine running the database.

■ Database Name (ORACLE_SID) or Database Network Service Name: if the
database is running on the same machine as the application, specify the
database’s ORACLE_SID. If you are accessing a database running on
another machine, enter the SQL*Net v2 connect string in the Database Net-
work Service Name instead.

■ Create Database User: leave unselected.
2-4 Oracle Application Server Developer’s Guide: PL/SQL and ODBC Applications

3. Reloading
■ Change Database Password: leave unselected.

■ Store the username and password in the DAD: select this option.

■ Click Apply.

11. In the DBA Account Info dialog:

■ DBA Username: enter the DBA username

■ Password and Confirm Password: enter the DBA password

■ Click Apply.

The following figure summarizes the dialog boxes that you completed. The
fields in the dialog boxes are listed in parentheses.

Figure 2–1 Dialogs to create a PL/SQL application, PL/SQL cartridge, and DAD

3. Reloading
After reconfiguring Oracle Application Server, you have to reload the server for the
new configuration to take effect. To reload the application server:

1. Select Applications in the Oracle Application Server Manager. This displays a
list of applications in the right frame.

2. Select ALL.

3. Click to reload the application server.

You also have to stop and restart the listener for the new virtual path to take effect.
To stop and restart the listeners:

Add Application (plsql, Manual)

Add PLSQL Cartridge dialog (cartname, display name, virtual

Add Application (appname, display name, version)

Success (Add Cartridge to this Application button)

Database Access Descriptor: Add (login data)

physical path, DAD name)path,

DBA Account Info (DBA username and password)
Tutorial 2-5

4. Creating an HTML Page to Invoke the Application
1. Click Http Listeners in the navigational tree to display the list of listeners.

2. Select the listeners that you want to stop. You must select all the listeners that
will be handling the request for the application.

3. Click to stop the listeners.

4. Click to restart the listeners.

4. Creating an HTML Page to Invoke the Application
To run the current_users procedure, enter the following URL in your browser:

http://<host>:<port>/simpleApp1/cart1/current_users

host and port identify the listener that knows about the cartridge. This is any lis-
tener on the application server except the node manager listener (which runs on
port 8888 by default). For example, you can use the administration utility listener,
which runs on port 8889 by default.

It is more common, however, to invoke the procedure from an HTML page. For
example, the following HTML page has a link that calls the URL.

<HTML>
<HEAD>
<title>Current Users</title>
</HEAD>

<BODY>
<H1>Current Users</H1>
<p>Run
current_users
</BODY>
</HTML>

Figure 2–2 shows the source page (the page containing the link that invokes the
stored procedure), and the page that is generated by the current_users stored
procedure.

Note: Whenever you stop and restart the Oracle Application
Server components, you also have to stop and restart the listeners.
2-6 Oracle Application Server Developer’s Guide: PL/SQL and ODBC Applications

4. Creating an HTML Page to Invoke the Application
Figure 2–2 The source page and the dynamically generated page in the tutorial

The source page The page generated by the current_users procedure
Tutorial 2-7

4. Creating an HTML Page to Invoke the Application
2-8 Oracle Application Server Developer’s Guide: PL/SQL and ODBC Applications

Adding and Invoking PL/SQL Applica
3

Adding and Invoking PL/SQL Applications

This chapter describes how to add PL/SQL applications to Oracle Application
Server and how to invoke them from browsers.

Contents
■ Adding PL/SQL Applications

■ Configuring PL/SQL Applications

■ Invoking a PL/SQL Cartridge

■ Overloaded Procedures

■ Variables with Multiple Values

■ Flexible Parameter Passing

■ Positional Parameters

■ Executing SQL Files

■ Life Cycle of the PL/SQL Cartridge

Adding PL/SQL Applications
To add PL/SQL applications to Oracle Application Server, you perform these steps:

1. Add the application.

2. Add cartridge(s) to the application

3. Add database access descriptors (DADs) to the application server. DADs can
be shared by more than one cartridge. You can add DADs when you add car-
tridges, or you can add them beforehand.
tions 3-1

Adding PL/SQL Applications
Adding Applications and Cartridges
You can add applications and cartridges to Oracle Application Server by following
these steps:

1. Start up your browser and display the top-level administration page for Oracle
Application Server.

2. Click the next to a site name to display the components on the site. You
should see “Oracle Application Server”, “HTTP Listeners”, and “Applications”.

3. Click “Applications” to display the applications in the right frame. Do not click
the next to Applications because you will see a list of applications for the
site in the left frame, instead of Applications in the right frame.

4. On the applications page in the right frame, click . This pops up the Add
Application dialog.

5. In the Add Application dialog:

■ Application Type: select PL/SQL.

■ Configure Mode: select Manually, which enables you to enter configuration
data using dialog boxes. The other option, From File, assumes that you
have already entered the configuration data for the application in a file.

■ Click Submit.

This displays the Add Application dialog.

6. In the Add Application dialog:

■ Application Name: enter the name that the server uses to identify your
application.

■ Display Name: enter the name that is used in the administration forms.

■ Application Version: enter a version number for your application.

■ Click Apply.

When you click Apply, you get a Success dialog box, which contains a but-
ton that enables you to add PL/SQL cartridges to the application.

7. In the Success dialog box, click the Add Cartridges to Application button. This
displays the Add PLSQL Cartridge dialog.

8. In the Add PLSQL Cartridge dialog:

■ Cartridge Name: enter the name that the server uses to identify your PL/
SQL cartridge in your application.

+

+

3-2 Oracle Application Server Developer’s Guide: PL/SQL and ODBC Applications

Adding PL/SQL Applications
■ Display Name: enter the name that is used in the administration forms.

■ Virtual Path: enter a virtual path for your PL/SQL cartridge. The default
virtual path for the PL/SQL cartridge is /<appName>/<cartName>.

Users specify this virtual path in URLs to invoke the PL/SQL cartridge.
The virtual path maps onto the location of your class files.

■ Physical Path: leave this field as it is if your PL/SQL cartridge is running
stored procedures. If your cartridge is running PL/SQL source files (“.sql”
extension), enter the full path of the directory that the PL/SQL source files.
See “Executing SQL Files” on page 3-18 for details on executing PL/SQL
source files.

■ DAD Name: select the name of the database access descriptor that is used
by this PL/SQL cartridge. If the DAD does not exist, you can create it by
clicking the Create New DAD button.

■ Create New DAD button. This displays the Add DAD dialog. A DAD speci-
fies database connection information such as the database to which you
want to connect, and the username and password to use to log into the
database. When users invoke the PL/SQL cartridge, the cartridge uses the
information in the DAD to connect to the database run the stored proce-
dure. See the next section for more details on DADs.

Creating Database Access Descriptors (DADs)
DADs provide the information on how to connect to the Oracle database contain-
ing the stored procedures that you want to execute. Each PL/SQL cartridge is asso-
ciated with one DAD.

DADs contain information such as the name of the database (the ORACLE_SID or
the network service name) and the host machine of the database. You can also pro-
vide database username and password information, but if you do not, the user will
be prompted for this information.

To add a DAD to the application server, you use the Add DAD dialog. You can
access the dialog from two places:

■ From the Create New DAD button in the Add PLSQL Cartridge dialog.

■ From the icon in the DB Access Descriptor form, which is located under
Oracle Application Server in the navigational tree.

In the Add DAD dialog:

■ DAD Name: enter the name of the DAD.
Adding and Invoking PL/SQL Applications 3-3

Adding PL/SQL Applications
■ Database User: enter the username that will be used to log into the database.

■ Database User Password and Confirm Password: enter the password for the
username.

■ Database Location (Host): enter the machine that contains the files for the data-
base’s ORACLE_HOME.

■ Database Name (ORACLE_SID): if your database is running on the same
machine as the application, specify the database’s ORACLE_SID.

■ Connect String: if you are accessing a database running on another machine,
enter the SQL*Net v2 connect string.

■ Create Database User: select if the specified username does not exist in the data-
base. If you select this option and you have installed the PL/SQL Web Toolkit
in this release (not from a previous release), the new user is given proper privi-
leges to access the Content service database objects.

■ Change Database Password: select if you want to change the username’s pass-
word.

■ Store the username and password in the DAD: if you save the username and
password with the DAD, all cartridges that use this DAD will log into the data-
base using these values, and the user will not be prompted. If you do not save
the username and password information with the DAD, the user will be
prompted for the username and password information when the cartridge
needs to log into the database.

■ Click Apply.

The following figure summarizes the dialog boxes that you completed. The fields
in the dialog boxes are listed in parentheses.

Note: To get your application to appear in the navigational tree,
shift-click the browser’s Reload button.
3-4 Oracle Application Server Developer’s Guide: PL/SQL and ODBC Applications

Adding PL/SQL Applications
Figure 3–1 Dialogs to create a PL/SQL application, PL/SQL cartridge, and DAD

Starting and Stopping the Application Server
After adding applications to the application server, you have to stop and restart the
listeners and the web request broker (WRB). See “3. Reloading” in Chapter 2, “Tuto-
rial” for details.

Adding Cartridges to an Existing Application
A PL/SQL application can have one or more cartridges. You need more than one
cartridge in a PL/SQL application if the application needs to access more than one
database.

To add a cartridge to a PL/SQL application:

1. Select “Cartridges” under the PL/SQL application to which you want to add
cartridges in the navigational tree.

Figure 3–2 Adding PL/SQL cartridges to an existing application

Add Application (plsql, Manual)

Add PLSQL Cartridge dialog (cartname, display name, virtual

Add DAD (database login data)

Add Application (appname, display name, version)

Success! (Add Cartridge to this Application button)

path, physical path, DAD name)
Adding and Invoking PL/SQL Applications 3-5

Adding PL/SQL Applications
2. Click to display the Add Cartridge dialog.

3. In the Add Cartridge dialog:

■ Configure Mode: select Manually.

■ Click Apply, which displays the Add PLSQL Cartridge dialog.

4. In the Add PLSQL Cartridge dialog:

■ Cartridge Name: enter the name that the server uses to identify your PL/
SQL cartridge in your application.

■ Display Name: enter the name that is used in the administration forms.

■ Virtual Path: enter a virtual path for your PL/SQL cartridge. The default
virtual path for the PL/SQL cartridge is /<appName>/<cartName>.

■ Physical Path: leave this field as it is if your PL/SQL cartridge is running
stored procedures. If your cartridge is running PL/SQL source files (“.sql”
extension), enter the full path of the directory that the PL/SQL source files.
See “Executing SQL Files” on page 3-18 for details on executing PL/SQL
source files.

■ DAD Name: select the database access descriptor that is used by this PL/
SQL cartridge. DADs specify the database to which the cartridge connects.
If the DAD does not exist, you can create it by clicking the Create New
DAD button.

■ Click Apply.

The following figure summarizes the dialog boxes that you completed. The fields
in the dialog boxes are listed in parentheses.

Figure 3–3 Dialogs to add PL/SQL cartridges

Note: To get your new cartridge to appear in the navigational
tree, shift-click the browser’s Reload button.

Add PLSQL Cartridge dialog (cartname, display name, virtual path,

Add DAD (database login data)

Add Cartridge (Manually add information)

physical path, DAD name)
3-6 Oracle Application Server Developer’s Guide: PL/SQL and ODBC Applications

Configuring PL/SQL Applications
Configuring PL/SQL Applications
The configuration forms are divided into two sections: application configuration
and cartridge configuration. Forms in the application configuration section contain
parameters that apply for the entire application, while forms in the cartridge config-
uration section contain parameters that apply to a particular cartridge.

Application Configuration
Application configuration parameters are described in Chapter 6, “Application
Administration” in the Oracle Application Server Administration Guide because they
are the same for all types of applications.

Cartridge Configuration
For PL/SQL cartridges, the cartridge configuration section contains two forms: the
Virtual Paths form and the PL/SQL Parameters form.

Virtual Paths Form
Each PL/SQL cartridge is mapped to a virtual path, and you use this virtual path
in URLs to invoke the cartridge. The last component of virtual paths for PL/SQL
cartridges specifies the stored procedure to run. For example, if you map the virtual
path /hr/benefits to a PL/SQL cartridge, a URL of /hr/benefits/intro would execute
the “intro” stored procedure. See “Invoking a PL/SQL Cartridge” on page 3-8 for
URL details.

The default virtual path for a PL/SQL cartridge is /<appName>/<cartName>. You
can change this virtual path using the Virtual Paths form.

In version 3.0 of Oracle Web Application Server, the virtual path had to contain the
name of the PL/SQL Agent. In version 4.0, the virtual path can be anything you
like. Each PL/SQL cartridge is associated with a DAD, which contains database
connection information.

To make virtual paths easier to maintain, you can adopt your own convention; for
example, you can use the default convention of /appname/cartname, where appname
specifies the name of the PL/SQL application, and cartname specifies the name of
the PL/SQL cartridge. Note that there is no requirement to have two components
in the virtual path. You can have as many components as you wish.

For more information on the Virtual Paths form, see Chapter 6, “Application
Administration” in the Oracle Application Server Administration Guide.
Adding and Invoking PL/SQL Applications 3-7

Invoking a PL/SQL Cartridge
PL/SQL Parameters Form
The PL/SQL Parameters form enables you to specify the following:

■ The DAD associated with the PL/SQL cartridge

■ Whether or not protection is enabled

■ The HTML page to display if an error occurs

■ How much error information to display to the user if an error occurs

■ Whether or not uploaded files are stored in compressed format

Figure 3–4 PL/SQL Parameters form

Invoking a PL/SQL Cartridge
You invoke a PL/SQL cartridge by giving a URL in the browser or in an HTML
page.

URL Format
To invoke a PL/SQL cartridge, the URL must be in the following format:

http://hostname[:port]/virtual_path/[package.]proc_name[?QUERY_STRING]

where:

■ hostname specifies the machine where the application server is running.

■ port specifies the port at which the application server is listening. If omitted,
port 80 is assumed.
3-8 Oracle Application Server Developer’s Guide: PL/SQL and ODBC Applications

Invoking a PL/SQL Cartridge
■ virtual_path specifies a virtual path mapped to the PL/SQL cartridge. The vir-
tual path can contain any number of components, and the string “plsql ” does
not have to appear anywhere in it. (This was not a requirement in 3.0, either.)

■ package specifies the package (if any) that contains the procedure. If omitted,
the procedure is stand-alone.

■ proc_name specifies the stored procedure to run. This must be a procedure and
not a function.

■ QUERY_STRING specifies parameters (if any) for the stored procedure. The
string follows the format of the GET method. For example, multiple parameters
are separated with the & character, and space characters in the values to be
passed in are replaced with the + character. If you use HTML forms to generate
the string (as opposed to generating the string yourself), the formatting will be
done automatically for you.

For example, if a browser sends the following URL:

http://www.acme.com:9000/mycartx/
get_emp?fname='john'&lname='doe'&role='office+manager'

the application server running on www.acme.com and listening at port 9000 would
handle the request. When the listener receives the request, it passes the request to
the WRB because it sees that the /mycartx virtual path is configured to call a PL/
SQL cartridge in a PL/SQL application. The WRB sends the request to a cartridge
server that is running the PL/SQL application.

The PL/SQL cartridge instance connects to the database using the DAD associated
with the cartridge and runs the get_emp stored procedure. The fname parameter of
the procedure gets the value john , the lname parameter gets the value doe , and the
role parameter gets the value “office manager ”. The space character is put back
in before the stored procedure sees the value.

Generally, you need not be concerned with the order in which PL/SQL parameters
are given in the URL or the HTTP header, because the parameters are passed by
name. However, there are two exceptions to this rule:

■ You could have multiple parameters of the same name. This might happen if
you have an HTML form that contains multiple elements with the same name.
In this case, the parameter is passed to the PL/SQL procedure as a PL/SQL
table. See “Variables with Multiple Values” on page 3-12.

■ You can pass parameter by position to the PL/SQL cartridge. See “Positional
Parameters” on page 3-17.
Adding and Invoking PL/SQL Applications 3-9

Overloaded Procedures
Caching Procedure Descriptions
Before executing a procedure, the PL/SQL cartridge gets the description of the
requested procedure from the database. This is done to check the type and number
of arguments of the procedure to be invoked. However, the procedure descriptions
are not expected to change in a production environment, and hence, one cartridge-
to-database network round trip can be avoided by caching the procedure descrip-
tion.

The PL/SQL cartridge caches the procedure descriptions by default. Any modifica-
tions to the procedure prototype while its description is cached by a cartridge
server process will put the cache out of synch. You need to restart the PL/SQL car-
tridge server process to view the modified procedure description.

If for some reason, the procedure prototype needs frequent changes, restarting the
PL/SQL cartridge server process every time is not a viable option. In such cases,
you should turn off caching of the procedure descriptions. You can turn off caching
of procedure descriptions by adding the following line manually under the RUNT-
IME.PLSQL section in the wrb.app file:

Cache_Proc_Desc = false

Note that updates to wrb.app should be done only after Oracle Application Server
is shut down.

Overloaded Procedures
PL/SQL supports overloading, where multiple subprograms (procedures or func-
tions) have the same name, but differ in the number, the order, or the data type fam-
ily of the parameters. When you call an overloaded subprogram, the PL/SQL
compiler determines which subprogram to call based on the data types passed. PL/
SQL allows you to overload local or packaged subprograms; standalone subpro-
grams cannot be overloaded. See the Oracle8 documentation for more information
on PL/SQL overloading.

In addition to PL/SQL’s restrictions on overloading, the PL/SQL cartridge places
one more restriction: you must give the parameters different names for overloaded
subprograms that have the same number of parameters. The reason for this is that
HTML data is not associated with data types, and this makes it impossible for the
cartridge to know which version of the subprogram to call. For example, PL/SQL
allows you to define the following two procedures, but you will get an error when
you try to use them with the PL/SQL cartridge because the parameter names are
the same:
3-10 Oracle Application Server Developer’s Guide: PL/SQL and ODBC Applications

Overloaded Procedures
-- legal PL/SQL, but not for the PL/SQL cartridge
CREATE PACKAGE my_pkg AS

PROCEDURE my_proc (val IN VARCHAR2);
PROCEDURE my_proc (val IN NUMBER);

END my_pkg;

To avoid the error, name the parameters differently. For example:

-- legal PL/SQL and also works for the PL/SQL cartridge
CREATE PACKAGE my_pkg AS

PROCEDURE my_proc (valvc2 IN VARCHAR2);
PROCEDURE my_proc (valnum IN NUMBER);

END my_pkg;

To invoke the first version of the procedure, the URL looks something like:

http://www.acme.com/mycart/my_pkg.my_proc?valvc2=input

To invoke the second version of the procedure, the URL looks something like:

http://www.acme.com/mycart/my_pkg.my_proc?valnum=34

Overloading and PL/SQL Arrays
If you have overloaded PL/SQL procedures where the parameter names are identi-
cal, but where the data type is owa_util.ident_arr for one procedure and a sca-
lar type for another procedure, the PL/SQL cartridge can still distinguish between
the two procedures. For example, if you have the following procedures:

CREATE PACKAGE my_pkg AS
PROCEDURE my_proc (val IN VARCHAR2); -- scalar data type
PROCEDURE my_proc (val IN owa_util.ident_arr); -- array data type

END my_pkg;

Each of these procedures has a single parameter of the same name, “val”.

When the PL/SQL cartridge gets a request that has only one value for the val
parameter, it invokes the procedure with the scalar data type. When it gets a
request with more than one value for the val parameter, it then invokes the proce-
dure with the array data type.

Example 1: if you send the following URL:

.../my_proc?val="john"

the scalar version of the procedure would execute.
Adding and Invoking PL/SQL Applications 3-11

Variables with Multiple Values
Example 2: if you send the following URL:

.../my_proc?val="john"&val="sally"

the array version of the procedure would execute.

If you want to ensure that the array version of the procedure runs, you can use hid-
den form elements on your HTML page to send dummy values, which are checked
and discarded in your procedure. See the following section for an example.

Variables with Multiple Values
A browser can return, to the server, variables that contain multiple values. For
example, an HTML form that uses the SELECT element allows users to select one
or more values from a given set. You can also have different form elements with the
same value for the NAME attribute, in which case the values for these elements will
be returned on the same variable name.

The PL/SQL cartridge handles multi-value variables by storing the values in a PL/
SQL table. This enables you to be flexible about how many values the user can pick,
and it makes it easy for you to process the user’s selections as a unit. Each value is
stored in a row in the PL/SQL table, starting at index 1. The first value (in the order
that it appears in the query string) of a variable that has multiple values is placed at
index 1, the second value of the same variable is placed at index 2, and so on. If the
order of the values in the PL/SQL table is significant in your procedure, you need
to determine the order in which the variables appear in the query string.

If you do not have variables with multiple values, you do not have to worry about
the order in which the variables appear, because their values are passed to the pro-
cedure’s parameters by name, not by position.

The PL/SQL tables used as parameters in the PL/SQL cartridge environment must
have a base type of VARCHAR2. Oracle can convert VARCHAR2 to other data
types such as NUMBER, DATE, or LONG. The maximum length of a VARCHAR2
variable is 32K.

If you cannot guarantee that at least one value will be submitted for the PL/SQL
table (for example, the user can select zero options), use a hidden form element to
provide the first value. Not providing a value for the PL/SQL table produces an
error, and you cannot provide a default value for a PL/SQL table.

The following example passes a multi-value parameter into a PL/SQL table. The
form contains a SELECT element and a set of checkbox elements. Note the two hid-
den elements: one is used for the SELECT element, and the other for the check-
boxes. This is the HTML that creates the form:
3-12 Oracle Application Server Developer’s Guide: PL/SQL and ODBC Applications

Variables with Multiple Values
<html>
<head>
<title>Multivalue Example</title>
</head>

<body>
<h1>Multivalue Example</h1>

<p>This form shows how variables with multiple values are
handled by the PL/SQL Cartridge. The form has one SELECT
element and a set of checkbox elements.

<form method="PUT" action="/mycart/dept_machine">

<input type=hidden name="departments" value="no_value">
<input type=hidden name="machines" value="no_value">

<p>Select the departments in which you want to search:
<p>
<select name="departments" multiple>

<option>Benefits
<option>Marketing
<option>Finance
<option>Sales
<option>Engineering
<option>QA
<option>Customer Support

</select>

<p>Select the machine type:

<input type=checkbox name="machines" value="PC">PC

<input type=checkbox name="machines" value="Mac">Mac

<input type=checkbox name="machines" value="Sun">Sun

<input type=checkbox name="machines" value="Other">Other

<p><input type=submit value="Search">
</form>
</body>
</html>

Figure 3–5 shows the form as it appears in a browser:
Adding and Invoking PL/SQL Applications 3-13

Variables with Multiple Values
Figure 3–5 Form passing in multiple values

When the user clicks Search, the dept_machine procedure runs on the database.
The procedure simply returns an HTML page that lists the user’s selections. Note
that the loop counter starts at index 2 because the hidden element values are in
index 1 in the PL/SQL tables. When the procedure prints out the number of rows
in the PL/SQL tables, it subtracts one to avoid counting the hidden row.

create or replace procedure dept_machine (
departments IN owa_util.ident_arr,
machines IN owa_util.ident_arr)

IS
counter INTEGER;
ct INTEGER;

BEGIN
htp.htmlopen;
htp.headopen;
htp.title('Dept and Machines Results');
htp.headclose;

htp.bodyopen;
htp.header(1, 'Dept and Machines Results');

ct := departments.COUNT - 1;
3-14 Oracle Application Server Developer’s Guide: PL/SQL and ODBC Applications

Variables with Multiple Values
htp.print('The "departments" PL/SQL table has ' || ct || ' rows.');
htp.print('You selected:');
htp.ulistOpen;
FOR counter IN 2 .. departments.COUNT LOOP

htp.listItem(departments(counter));
END LOOP;
htp.ulistClose;

ct := machines.COUNT - 1;
htp.print('The "machines" PL/SQL table has ' || ct || ' rows.');
htp.print('You selected:');
htp.ulistOpen;
FOR counter IN 2 .. machines.COUNT LOOP

htp.listItem(machines(counter));
END LOOP;
htp.ulistClose;
htp.paragraph;

htp.bodyclose;
htp.htmlclose;

END;
/
show errors
For example, if the user selects “Benefits” and “Customer Support” from the
SELECT element, and “PC”, “Mac”, and “Sun” from the checkbox, the procedure
returns an HTML page that looks like the page in Figure 3–6.

Figure 3–6 Generated page from the multi-value example

Note: OCI has a limitation of 2000 bytes on the size of
VARCHAR2. Please keep this limitation in mind while developing
your application.
Adding and Invoking PL/SQL Applications 3-15

Flexible Parameter Passing
Flexible Parameter Passing
You can have HTML forms from which users can select any number of elements. If
these elements have different names, you would have to create overloaded proce-
dures to handle each possible combination, or, alternatively, you could insert hid-
den form elements to ensure that the names in the query string are consistent each
time, regardless of which elements the user chooses.

Oracle Application Server 4.0 makes this easier by enabling you to define a proce-
dure that the PL/SQL cartridge invokes when you do not have a procedure that
matches the names in the query string. The procedure is passed all the name-value
pairs in the query string, and it has the following signature:

proc_name (
num_entries IN NUMBER,
name_array IN OWA.vc_arr,
value_array IN OWA.vc_arr,
reserved IN OWA.vc_arr)

where:

proc_name is the name of the PL/SQL procedure that you are invoking.

num_entries specifies the number of name-value pairs in the query string.

name_array specifies the names from the query string.

value_array specifies the values from the query string.

reserved is not used currently. It is reserved for future use.

If you do not define this procedure and the names in the query string do not match
any of the procedures, you will get an error message.

Here is an example of a procedure that prints out the name-value pairs in the query
string:

CREATE or REPLACE PROCEDURE MY_PROC (
num_entries IN NUMBER,
name_array IN OWA.vc_arr,
value_array IN OWA.vc_arr,
reserved IN OWA.vc_arr)

IS
BEGIN

htp.htmlopen;
htp.headopen;
htp.title('Unmatched query string example');
3-16 Oracle Application Server Developer’s Guide: PL/SQL and ODBC Applications

Positional Parameters
htp.headclose;

htp.bodyopen;
htp.header(1, 'Unmatched query string example');

htp.print('Query string has ' || num_entries ||
' name-value pairs.');

htp.dlistOpen;
FOR counter IN 1 .. num_entries
LOOP

htp.dlistTerm(name_array(counter));
htp.dlistDef(value_array(counter));

END LOOP;
htp.dlistClose;
htp.bodyclose;
htp.htmlclose;

END;
/
show errors

Positional Parameters
When the PL/SQL cartridge receives a request for a stored procedure, it must make
two trips to the database: first, it connects to the database to determine if the speci-
fied procedure exists. If the procedure does exist, it then makes a second trip to
instruct the database to execute the procedure.

If you are certain that the procedure exists in the database, you can save a trip by
telling the PL/SQL cartridge to skip the verification step. To do this, prefix the
name of the procedure with a ^ character in the URL. This also causes any parame-
ters for the procedure to be matched by position instead of by name.

For example, if you have a procedure called “my_proc” that takes two parameters,
param1 and param2, you can invoke it with any of the following URLs:

/* usual style */
http://machine/mycart/my_proc?param1=val1¶m2=val2

/* bypass procedure verification, parameters are matched by position */
http://machine/mycart/̂ my_proc?param1=val1¶m2=val2

/* bypass procedure verification, parameter names do not have to match */
http://machine/mycart/̂ my_proc?x=val1&y=val2
Adding and Invoking PL/SQL Applications 3-17

Executing SQL Files
/* for procedures in packages, the ̂ character comes before the package name */
http://machine/mycart/̂ my_pkg.my_proc?x=val1&y=val2

When you use the usual invocation style (that is, without the ^), parameters are
matched by name. When you use the ^ character, parameters are matched by posi-
tion. This means that you can use any string for the parameter name; you do not
have to match it exactly with the name in the database. However, you must match
the number of parameters, and you must be careful of the order in which the val-
ues appear in the query string.

Note that the flexible parameter passing feature (on page 3-16) does not work with
this positional parameter feature. If the number of parameters does not match or if
the procedure does not exist, you will get a generic error message that might not
pinpoint the error exactly.

Executing SQL Files
In addition to running PL/SQL procedures stored in the database, the PL/SQL car-
tridge can also run PL/SQL source files from the file system. This feature enables
you to execute PL/SQL statements without storing them in the database. You
might want to use this feature while prototyping PL/SQL code. This saves you
from re-loading procedures into the database each time you edit them.

The file contains an anonymous PL/SQL block, that is, it does not define a function
or procedure. The file begins with either a DECLARE or a BEGIN statement. You
need the DECLARE statement only if you are using variables in the block. For more
details on anonymous blocks, see the PL/SQL documentation.

You need to name your PL/SQL files with a “.sql” extension, because this is how
the PL/SQL cartridge distinguishes procedure names from filenames when it reads
the URL. Otherwise, the syntax is similar to that of using the cartridge to run stored
procedures.

Note that you cannot use owa_util.showsource to display the PL/SQL state-
ments in the .sql files because the files are stored in the cartridge rather than in the
database.

Note: If you are using the PL/SQL cartridge to run SQL files from
the filesystem, the SQL file cannot have a “/” character at the end
of the file. If a “/” is present at the end of the file, the PL/SQL car-
tridge will be unable to execute the specified file.
3-18 Oracle Application Server Developer’s Guide: PL/SQL and ODBC Applications

Executing SQL Files
Location of PL/SQL Source Files
The PL/SQL source files are located in the physical paths that are associated with
the virtual paths. For example, if you map the /test/sql virtual path to the
%ORAWEB_HOME%/sample/plsql physical path, the following URL

http://machine.domain.name:port/test/sql/mysqlfile.sql

would execute PL/SQL statements from the file %ORAWEB_HOME%/sample/
plsql/mysqlfile.sql. The PL/SQL cartridge configuration information associated
with the /test/sql virtual path is used to connect to the database.

Parameters
You can pass parameters to the PL/SQL source file in the URL’s query string as
name-value pairs. In the PL/SQL code, you access these name-value pairs as “bind
variables”. For example, if you have the following URL:

http://machine.domain.name:port/test/sql/mysqlfile.sql?first_name=john

you can access the value of the first_name variable by prefixing it with a colon in
the code:

declare
 n varchar2(32);
begin
 n := :first_name; /* n is 'john' */
 htp.htmlOpen;
 htp.headOpen;
 htp.title('Hello ' || n);
 htp.headClose;

htp.bodyOpen;
 htp.header(1, 'Sample for using .sql files');
 htp.print('Hello ' || n);
 htp.br;
 htp.print('The URL is ' || owa_util.get_cgi_env('SCRIPT_NAME') ||
 owa_util.get_cgi_env('PATH_INFO'));
 htp.br;
 htp.print('This is from file' || owa_util.get_cgi_env('PATH_TRANSLATED'));

htp.bodyClose;
htp.htmlClose;

end;

Note that you cannot bind arrays in PL/SQL files because arrays are not supported
as bind variables.
Adding and Invoking PL/SQL Applications 3-19

Life Cycle of the PL/SQL Cartridge
Life Cycle of the PL/SQL Cartridge
This section describes what the PL/SQL cartridge does when it receives a request.
This section assumes knowledge of the callback functions used by the web request
broker (WRB).

You do not need to know the information in this section in order to use the PL/SQL
cartridge. However, this information is useful if you want to know the architecture
of the cartridge.

Initialization
When a cartridge server process starts up, the InitRuntime callback function runs,
and it initializes data structures used for all the cartridges in the application.

The InitCartridge callback function, which runs when the first instance of each car-
tridge starts up, reads the configuration information for the cartridge and sets up
the database connection information.

The InitInstance callback function runs when each cartridge instance starts up, and
it initializes request-specific data.

Authorization
The Authorize callback function is executed when a PL/SQL cartridge receives a
request. The Authorize function:

■ Checks if the requested object is protected under any authorization schemes or
restrictions.

■ Checks if the DAD contains username/password information is correct:

■ If not, the user is prompted to enter the username and password. The func-
tion logs into the database using the provided username and password.

■ If so, the function logs into the database and checks the authorization level
set in the owa_sec package to determine if custom, or database-level,
authentication is specified (See Chapter 5, “Authentication and Security”
for details on custom authentication.). If so, the custom PL/SQL function
that authenticates the user is executed.

Execution
If the Authorize callback function succeeds, the Exec callback function is called
next. The Exec function:

■ Gets the values of the CGI environment variables.
3-20 Oracle Application Server Developer’s Guide: PL/SQL and ODBC Applications

Life Cycle of the PL/SQL Cartridge
■ Determines the PL/SQL procedure to run.

■ Determines the parameters for the procedure.

■ Builds PL/SQL scripts that bind the variables, and executes the scripts, which
execute the procedure and write the output to the client through the WRB.

Shutdown
The Shutdown callback function is called automatically by the WRB. It closes all
open connections.
Adding and Invoking PL/SQL Applications 3-21

Life Cycle of the PL/SQL Cartridge
3-22 Oracle Application Server Developer’s Guide: PL/SQL and ODBC Applications

Using the PL/SQL Web T
4

Using the PL/SQL Web Toolkit

Contents
■ Common Schema

■ PL/SQL Web Toolkit Installation

■ Packages in the Toolkit

■ Conventions for Parameter Names in the Toolkit

■ Attributes to HTML Tags

■ PL/SQL Cartridge and Applets

■ Sessions/Cookies

■ LONG Data Type

■ Inter-Cartridge Exchange (ICX)

■ Extensions to the htp and htf Packages

■ File Upload and Download

■ String Matching and Manipulation

Common Schema
Before you can use the PL/SQL cartridge, you must install the packages in the PL/
SQL Web Toolkit in a common schema called “oas_public” in your Oracle database.
You can install the Toolkit during the installation of the application server, or you
can do it any time after you installed the application server using the Oracle Appli-
cation Server administration forms.
oolkit 4-1

PL/SQL Web Toolkit Installation
The schemas where you load the packages have changed between versions 3.0 and
4.0. In 3.0 the packages had to be loaded in each schema accessed by PL/SQL car-
tridges. In 4.0 the packages are loaded in the “oas_public” common schema, and
public synonyms are used to enable users to execute the objects in the common
schema. Users execute the objects in the common schema with their own privileges,
rather than with the privileges of the common schema.

Figure 4–1 Common schema for the PL/SQL Web Toolkit

If you are upgrading from 3.0, you need to remove the 3.0 packages from the indi-
vidual schemas. The 4.0 packages will be installed automatically in a common
schema.

PL/SQL Web Toolkit Installation
If you did not install the PL/SQL Web Toolkit when you installed Oracle Applica-
tion Server, you can install it using Oracle Application Server Manager.

The installation script does the following:

■ creates a user account for oas_public and installs the Toolkit in the schema.

■ creates a websys user and installs the Content service database objects and
owa_content package in the websys schema.

1. Start up your browser and display the top-level administration page for Oracle
Application Server.

3.0 4.0

User packages
PL/SQL Toolkit

SYS packages

User schemas

oas_public

SYS schema

common schema
4-2 Oracle Application Server Developer’s Guide: PL/SQL and ODBC Applications

PL/SQL Web Toolkit Installation
2. Click OAS Utilities to display the Utilities navigational tree.

3. In the Utilities navigational tree, click the next to Install.

4. Under Install, click PLSQL Toolkit to display the Install form (Figure 4–2).

5. In the Install form, enter information on which Oracle database should contain
the PL/SQL Web Toolkit:

■ ORACLE_SID: the name of the local Oracle database, if any.

■ Connect String: if the database is running on another machine, specify the
SQL*Net V2 connect string here.

■ DBA Username and Password: the login to use to run the script that
installs the PL/SQL Web Toolkit.

■ Click Apply. This could take some time as the packages are being installed.

Figure 4–2 PL/SQL Web Toolkit Install form

Note: You have to use SYS as the DBA user to install the Toolkit.
Logging in as other users, including the SYSTEM user, will not
work because they cannot grant execute privilege on the
sys.dbms_sys_sql procedure to oas_public.

+

Using the PL/SQL Web Toolkit 4-3

Packages in the Toolkit
Packages in the Toolkit
The PL/SQL Web Toolkit contains the following packages:

Table 4–1 Packages in the PL/SQL Web Toolkit

Package Description

htf and htp The htp (hypertext procedures) package contains procedures that
generate HTML tags. For instance, the htp.anchor procedure gener-
ates the HTML anchor tag, <A>.

The htf (hypertext functions) package contains the function version
of the procedures in the htp package. The function versions do not
directly generate output in your web page. Instead, they pass their
output as return values to the statements that invoked them. Use
these functions when you need to nest calls.

To print the output of htf functions, call them from within the
htp.print procedure, which simply prints its parameter values to the
generated web page.

owa Contains subprograms required by the PL/SQL cartridge.

owa_sec Contains subprograms used by the cartridge for authenticating
requests.

owa_util Contains utility subprograms. It is divided into the following areas:

■ Dynamic SQL utilities enable you to produce pages with
dynamically generated SQL code.

■ HTML utilities enable you to retrieve the values of CGI environ-
ment variables and perform URL redirects.

■ Date utilities enable correct date-handling. Date values are sim-
ple strings in HTML, but should be properly treated as a data
type by the Oracle database.

owa_pattern Contains subprograms that you can use to perform string matching
and string manipulation with regular expression functionality.

owa_text Contains subprograms used by owa_pattern for manipulating
strings. They are externalized so you can use them directly.

owa_image Contains subprograms that get the coordinates of where the user
clicked on an image. Use this package when you have an imagemap
whose destination links invoke a PL/SQL cartridge.
4-4 Oracle Application Server Developer’s Guide: PL/SQL and ODBC Applications

Packages in the Toolkit
htp and htf
The htp and htf packages provide subprograms that enable you to generate
HTML tags from your stored procedure. For example, the following commands
generate a simple HTML document:

create or replace procedure hello AS
BEGIN
 htp.htmlopen; -- generates <HTML>
 htp.headopen; -- generates <HEAD>
 htp.title('Hello'); -- generates <TITLE>Hello</TITLE>
 htp.headclose; -- generates </HEAD>
 htp.bodyopen; -- generates <BODY>
 htp.header(1, 'Hello'); -- generates <H1>Hello</H1>
 htp.bodyclose; -- generates </BODY>
 htp.htmlclose; -- generates </HTML>
END;

These packages also provide print procedures (such as htp.print), which writes its
argument to the current document. You can use these print procedures to generate
non-standard HTML, to display the return value of functions, or to pass hard-
coded text that appears in the HTML document as-is. The generated text is passed
to the PL/SQL cartridge, which then sends it to the user’s browser.

owa_cookie Contains subprograms that enable you to send HTTP cookies to and
get them from the client’s browser. Cookies are opaque strings sent
to the browser to maintain state between HTTP calls. State can be
maintained throughout the client’s session, or longer if an expiration
date is included. Your system date is calculated with reference to the
information specified in the owa_custom package.

owa_opt_lock Contains subprograms that enable you to impose database optimis-
tic locking strategies, so as to prevent lost updates. Lost updates can
occur if a user selects and then attempts to update a row whose val-
ues have been changed in the meantime by another user.

owa_custom Contains the authorize function (see “Custom Authentication” on
page 5-4), and the time zone constants used by cookies.

owa_content Contains subprograms that enable you to query the Content service
repository and manipulate document properties. To use this pack-
age, the user needs execute privilege on this package. You can grant
the privilege as the sys user.

Table 4–1 Packages in the PL/SQL Web Toolkit

Package Description
Using the PL/SQL Web Toolkit 4-5

Packages in the Toolkit
owa_image
The owa_image package contains subprograms that get the coordinates of where
the user clicked on an image. You use this for imagemaps that invoke the PL/SQL
cartridge. Your procedure would look something like:

create or replace procedure process_image
 (my_img in owa_image.point)
 x integer := owa_image.get_x(my_img);
 y integer := owa_image.get_y(my_img);
begin
 /* process the coordinate */
end

owa_opt_lock
The owa_opt_lock package contains subprograms that enable you to impose data-
base optimistic locking strategies, so as to prevent lost updates. Lost updates can
occur if a user selects and then attempts to update a row whose values have been
changed in the meantime by another user.

The PL/SQL cartridge cannot use conventional database locking schemes because
HTTP is a stateless protocol. The owa_opt_lock package works around this by giv-
ing you two ways of dealing with the lost update problem:

■ The hidden fields method stores the previous values in hidden fields in the
HTML page. When the user requests an update, the cartridge checks these val-
ues against the current state of the database. The update operation is per-
formed only if the values match. To use this method, call the
owa_opt_lock.store_values procedure.

■ The checksum method stores a checksum rather than the values themselves. To
use this method, call the owa_opt_lock.checksum function.

These methods are “optimistic”. That is, they do not prevent other users from per-
forming updates, but they do reject the current update if an intervening update has
occurred.

owa_custom
This feature is new to Oracle Application Server 4.0.

The owa_custom package contains the authorize function (see “Custom Authentica-
tion” on page 5-4), and the time zone constants used by cookies. Cookies use expira-
tion dates defined in Greenwich Mean Time (GMT). If you are not on GMT, you can
specify your time zone using one of these two constants:
4-6 Oracle Application Server Developer’s Guide: PL/SQL and ODBC Applications

Packages in the Toolkit
■ If your time zone is recognized by Oracle, you can specify it directly using
dbms_server_timezone . The value for this is a string abbreviation for your
time zone. (See Oracle Server SQL Reference under “SQL Functions” for a list of
recognized time zones.) For example, if your time zone is Pacific Standard
Time, you can use the following:

dbms_server_timezone constant varchar2(3) := 'PST'

■ If your time zone is not recognized by Oracle, use dbms_server_gmtdiff to
specify the offset of your time zone from GMT. Specify a positive number if
your time zone is ahead of GMT, otherwise use a negative number.

dbms_server_gmtdiff constant number := NULL

After making the appropriate changes, you need to reload the package.

owa_content
The owa_content package contains functions and procedures that let you query
the content service repository and manipulate document properties. You can use
this package to perform tasks, like:

■ set a document description

■ delete documents

■ delete document attributes

■ retrieve attribute information

■ list document attributes

■ retrieve content type of a document

When compiling PL/SQL procedures and packages that use the owa_content
package, you may get the following error message:

PLS-00201

identifier ‘WEBSYS.OWA_CONTENT’ must be declared

To avoid this error, when creating a new DAD that uses a non local database, you
must enter the SYS username and corresponding password when prompted for a
DBA user. Entering the SYSTEM user will not allows the correct grant and rights to
be assigned to the database user. If you have entered SYSTEM as the DBA user then
you must explicitly perform the grant privilege option as shown below:

SQL>grant all on WEBSYS.OWA_CONTENT to scott
Using the PL/SQL Web Toolkit 4-7

Conventions for Parameter Names in the Toolkit
If you are creating a DAD using an existing database user, you must perform the
manual grant privilege shown above before using the OWA_CONTENT package.

The PL/SQL samples use the OWA_CONTENT package; so, these steps must be
performed before installing the PL/SQL samples.

Conventions for Parameter Names in the Toolkit
In the PL/SQL Web Toolkit, the first letter of the parameter name indicates the data
type of the parameter:

Attributes to HTML Tags
Many HTML tags have a large number of optional attributes that, if passed as indi-
vidual parameters to the hypertext procedures or functions, would make the calls
cumbersome. In addition, some browsers support non-standard attributes. There-
fore, each hypertext procedure or function that generates an HTML tag has as its
last parameter cattributes, an optional parameter. This parameter enables you to
pass the exact text of the desired HTML attributes to the PL/SQL procedure.

For example, the syntax for htp.em is:

htp.em(ctext, cattributes);
A call that uses HTML 3.0 attributes might look like the following:

htp.em('This is an example','ID="SGML_ID" LANG="en"');
which would generate the following:

<EM ID="SGML_ID" LANG="en">This is an example

PL/SQL Cartridge and Applets
When you reference an applet using the APPLET tag in an HTML file, the server
looks for the applet class file in the directory containing the HTML file. If the applet
class file is in another directory, you use the CODEBASE attribute of the APPLET
tag to specify that directory.

Table 4–2 Parameter names in the PL/SQL Web Toolkit

First character Data type Example

c VARCHAR2 cname IN VARCHAR2

n INTEGER nsize IN INTEGER

d DATE dbuf IN DATE
4-8 Oracle Application Server Developer’s Guide: PL/SQL and ODBC Applications

Sessions/Cookies
When you generate an HTML page from the PL/SQL cartridge and the page refer-
ences an applet, you must specify the CODEBASE attribute because the cartridge
does not have a concept of a current directory and does not know where to look for
the applet class file.

The following example uses htp.appletopen to generate an APPLET tag. It uses the
cattributes parameter to specify the CODEBASE value.

htp.appletopen('myapplet.class', 100, 200, 'CODEBASE="/applets"')
generates

<APPLET CODE="myapplet.class" height=100 width=200 CODEBASE="/applets">

/applets is a virtual path that contains the myapplet.class file.

Sessions/Cookies
The Web Request Broker uses sessions to maintain persistent state within cartridges
across multiple requests. Cookies can be used to maintain persistent state variables
from the client browser. For information about cookies, see:

■ http://home.netscape.com/newsref/std/cookie_spec.html

■ http://www.virtual.net/Projects/Cookies/

The owa_cookie package enables you to send and retrieve cookies in HTTP head-
ers. It contains the following subprograms that you can use to set and get cookie
values:

■ owa_cookie.cookie data type contains cookie name-value pairs.

■ owa_cookie.get function gets the value of the specified cookie.

■ owa_cookie.get_all procedure gets all cookie name-value pairs.

■ owa_cookie.remove procedure removes the specified cookie.

■ owa_cookie.send procedure generates a “Set-Cookie” line in the HTTP header.

Note: All HTTP headers have to be in English. If the headers are
being generated from the database, make sure they are created in
the English language.
Using the PL/SQL Web Toolkit 4-9

LONG Data Type
LONG Data Type
If you use values of the LONG data type in procedures/functions such as htp.print,
htp.prn, htp.prints, htp.ps, or owa_util.cellsprint, be aware that only the first 64K of
the LONG data is used. This reason for this limitation is that the LONG data is
bound to a varchar2 data type in the procedure/function.

Inter-Cartridge Exchange (ICX)
If you are running Oracle database version 7.3.3 or later, you can call other car-
tridges from within your procedure using ICX. ICX enables a cartridge to communi-
cate with other cartridges by making HTTP requests. The responses from the ICX
calls can be received back by the calling cartridge (in this case, your procedure) for
further processing.

To call cartridges from a stored procedure, you use the utl_http package. See the
Oracle database documentation for details on the package. For the 7.3.3 release, the
information is in the “readme” file. For the 8.x release, the information is in the
Application Developers Guide.

Extensions to the htp and htf Packages
The htp and htf packages allow you to use customized extensions. Therefore, as the
HTML standard changes, you can add new functionality similar to the hypertext
procedure and function packages to reflect those changes.

Here is an example of customized packages using non-standard <BLINK> and
imaginary <SHOUT>tags:

create package nsf as
 function blink(cbuf in varchar2) return varchar2;
 function shout(cbuf in varchar2) return varchar2;
end;

create package body nsf as
 function blink(cbuf in varchar2) return varchar2 is
 begin return ('<BLINK>' || cbuf || '</BLINK>');
 end;
 function shout(cbuf in varchar2) return varchar2 is
 begin return ('<SHOUT>' || cbuf || '</SHOUT>');
 end;
end;

create package nsp as
 procedure blink(cbufin varchar2);
4-10 Oracle Application Server Developer’s Guide: PL/SQL and ODBC Applications

File Upload and Download
 procedure shout(cbufin varchar2);
end;

create package body nsp as
 procedure blink(cbufin varchar2) is
 begin htp.print(nsf.blink(cbuf));
 end;
 procedure shout(cbufin varchar2) is
 begin htp.print(nsf.shout(cbuf));
 end;
end;

Now you can begin to use these procedures and functions in your own procedure.

create procedure nonstandard as
begin
 nsp.blink('Gee this hurts my eyes!');
 htp.print('And I might ' || nsf.shout('get mad!'));
end;

File Upload and Download
The PL/SQL cartridge allows you to transfer files from a client machine to a data-
base (uploading) and vice versa (downloading). You can upload and download text
and binary files. The file upload/download feature of the PL/SQL cartridge is
based on Oracle Application Server’s Content Service.

Attributes of the uploaded files (such as file name, last modified date, content type,
and owner) are also stored in the database. You can query the attributes and dis-
play only files that match the query criteria.

In the database, the files can be stored in uncompressed or compressed format,
which is compatible with gzip.

Upload
To upload files from a client machine to a database, you create an HTML page that
contains:

■ A FORM tag whose enctype attribute is set to “multipart/form-data” and
whose action attribute is associated with a PL/SQL cartridge function call.

Note: If you are using the listener that ships with Oracle Applica-
tion Server, there is a limit of 8 million bytes that you can transfer.
Using the PL/SQL Web Toolkit 4-11

File Upload and Download
■ An INPUT element whose type and name attributes are set to file . The
“INPUT type=file ” element enables a user to browse and select files from
the file system.

When a user clicks the submit button to trigger the form action, the following
events occur:

1. The browser uploads the contents of the files specified by the user as well as
other form data to the server.

2. The PL/SQL cartridge stores the file contents in the database.

3. The stored procedure specified in the action attribute is run similarly to
invoking PL/SQL cartridges without file upload. The difference is that the file
names are also passed to the procedure as an argument with other form data.

The DAD associated with the PL/SQL cartridge must be Content service-
enabled. This means that the username associated with the DAD must be
granted the ows_standard_role role in the database. If the DAD is not associ-
ated with a username, then the username that the user enters must be able to
assume that role. This role enables the user to write the file contents to the Con-
tent service tables. Otherwise, an error occurs.

The following example shows an HTML form that enables a user to select a file
from the file system to upload. The form contains other fields that allow the user to
provide information about the file.

Figure 4–3 Upload form
4-12 Oracle Application Server Developer’s Guide: PL/SQL and ODBC Applications

File Upload and Download
The HTML page is:

<html>
<head>
<title>test upload</title>
</head>

<body>
<p>start form
<FORM

enctype="multipart/form-data"
action="/sample/plsql/write_info"

 method="POST">
<p>Who:
<INPUT type="text" name="who">

<p>Description:
<INPUT type="text" name="description">

<p>File to upload:
<INPUT type="file" name="file">

<p>
<INPUT type="submit">

</FORM>
<p> end of form
</body>

</html>

When a user clicks the Submit button, the browser uploads the file listed in the
“INPUT type=file ” element. The write_info procedure is then run; the proce-
dure writes information from the form fields to a table in the database, and returns
a page to the user. It looks like this:

create procedure write_info (
 who in varchar2,
 description in varchar2,
 file in varchar2) as
begin
 insert into myTable values (who, description, file);
 htp.htmlopen;
 htp.headopen;
 htp.title('File Uploaded');
Using the PL/SQL Web Toolkit 4-13

File Upload and Download
 htp.headclose;
 htp.bodyopen;
 htp.header(1, 'Upload Status');
 htp.print('Uploaded ' || file || ' successfully');
 htp.bodyclose;
 htp.htmlclose;

end;

The procedure does not have to return anything to the user. But it is a good idea to
let the user know whether the upload operation succeeded or failed.

In the stored procedure, you need to have an input parameter whose name is “file”
because this is a required form element when uploading files. Its data type is either
varchar2 or owa.vc_arr . Use varchar2 if you allow the user to upload a single
file per submit action; use owa.vc_arr if you allow the user to upload multiple
files per submit. To upload multiple files, you need to have multiple “INPUT
type=file name=file ” elements.

To store the uploaded file in compressed format, configure the cartridge to do so
using the PL/SQL Parameters form in the Oracle Application Server Manager. In
the wrb.app file, this corresponds to the owa_compress_files parameter. This
parameter is set to FALSE by default.

Download
After you have uploaded files to the database, you can download them, delete
them from the database, and read and write their attributes.

To download files from a database to a user’s machine, you use the
htp.download_file procedure. The procedure has two variations:

htp.download_file(sFileName in varchar2)
htp.download_file(sFileName in varchar2, bCompress in boolean)

The first parameter specifies the file to download, and the second parameter speci-
fies whether the file should be compressed first before downloading.

After you download files from the database, do the following to see a list of down-
loaded files and their compression:

htp.get_download_files_list(sFileName out varchar2)

Note: Depending on the platform, the browser can pass the file
name without the full path to the server.
4-14 Oracle Application Server Developer’s Guide: PL/SQL and ODBC Applications

File Upload and Download
htp.get_download_files_list(bCompress out binary_integer);

The following example shows an HTML form that enables a user to download a
file. The form displays a list of files available for download, and includes a submit
button.

Figure 4–4 Download form

The HTML for the page is as follows:

<HTML>
<head>
<title>test download</title>
</head>

<body bgcolor="white">

<h2>Download Files</h2>

<FORM action="/sample/plsql/download" method="POST">

<p>Select file to download
<p>
<SELECT name="filex" size=5>
<option value="file1">file1</option>
Using the PL/SQL Web Toolkit 4-15

File Upload and Download
<option value="file2">file2</option>
<option value="file3">file3</option>
<option value="file4">file4</option>
<option value="file5">file5</option>
<option value="file6">file6</option>
<option value="file7">file7</option>
<option value="file8">file8</option>
</select>

<p>
<INPUT type="submit" value="Download">

</FORM>
<p> end of form

<p>
</body>

</HTML>

The action associated with the download button invokes a stored procedure called
download that downloads the selected file.

The code for the download procedure is:

create procedure download (filex in varchar2) as
begin
 htp.download_file(filex);
end;

After the user clicks the download button, the browser prompts the user for the file-
name under which to save the downloaded file. Note the following points about
the procedure that downloads files:

■ Calls to procedures that generate HTML, such as procedures in the HTP pack-
age, are ignored. It can invoke queries and stored procedures, but it cannot
write strings that are returned to the browser. It can return only the contents of
a file.

■ The stored procedure can call htp.download_file only once. You cannot
download multiple files.

■ If the downloaded files is compressed, use gunzip to uncompress the file.
4-16 Oracle Application Server Developer’s Guide: PL/SQL and ODBC Applications

String Matching and Manipulation
Refer to Chapter 2, “The owa_content Package” for more utilities that enable you to
manipulate the database file repository.

String Matching and Manipulation
The owa_pattern package contains procedures and functions that you can use to
perform string matching and string manipulation with regular expression function-
ality. The package provides the following subprograms:

■ The owa_pattern.match function determines whether a regular expression
exists in a string. It returns TRUE or FALSE.

■ The owa_pattern.amatch function is a more sophisticated variation of the
owa_pattern.match function. It lets you specify where in the string the match
has to occur. This function returns the end of the location in the string where
the regular expression was found. If the regular expression is not found, it
returns 0.

■ The owa_pattern.change function and procedure lets you replace the portion of
the string that matched the regular expression with a new string. If you call it
as a function, it returns the number of times the regular expression was found
and replaced.

These subprograms are overloaded. That is, there are several versions of each, dis-
tinguished by the parameters they take. Specifically, there are six versions of
MATCH, and four each of AMATCH and CHANGE. The subprograms use the fol-
lowing parameters:

■ line - This is the target to be examined for a match. Despite the name, it can be
more than one line of text or can be a owa_text.multi_line data type.

■ pat - This is the pattern that the subprograms attempt to locate in line. The pat-
tern can contain regular expressions. Note in the owa_pattern.change function
and procedure, this parameter is called from_str.

■ flags - This specifies whether the search is case-sensitive or if substitutions are
to be done globally.

owa_pattern.match
The regular expression in this function can be either a VARCHAR2 or a
owa_pattern.pattern data type. You can create a owa_pattern.pattern data type
from a string using the owa_pattern.getpat procedure.
Using the PL/SQL Web Toolkit 4-17

String Matching and Manipulation
You can create a multi_line data type from a long string using the
owa_text.stream2multi procedure. If a multi_line is used, the rlist parameter speci-
fies a list of chunks where matches were found.

If the line is a string and not a multi_line, you can add an optional output parame-
ter called backrefs. This parameter is a row_list that holds each string in the target
that was matched by a sequence of tokens in the regular expression. Here is an
example of the owa_pattern.match function:

boolean foundMatch;
foundMatch := owa_pattern.match('KAZOO', 'zoo.*', 'i');

This is how the function works: KAZOO is the target where it is searching for the
“zoo.* ” regular expression. The period indicates any character other than new-
line, and the asterisk matches 0 or more of the preceding characters. In this case, it
matches any character other than the newline.

Therefore, this regular expression specifies that a matching target consists of “zoo,”
followed by any set of characters neither ending in nor including a newline (which
does not match the period). The i is a flag indicating that case is to be ignored in the
search. In this case, the function returns TRUE, which indicates that a match had
been found.

owa_pattern.change
owa_pattern.change can be a procedure or a function, depending on how it is
invoked. As a function, it returns the number of changes made. If the flag ‘g’ is not
used, this number can only be 0 or 1. The flag ‘g’ specifies that all matches are to be
replaced by the regular expression. Otherwise, only the first match is replaced.

The replacement string can use the token ampersand (&), which indicates that the
portion of the target that matched the regular expression is to be included in the
expression that replaces it. For example:

owa_pattern.change('Cats in pajamas', 'C.+in', '& red ')

The regular expression matches the substring ‘Cats in’. It then replaces this string
with ‘& red’. The ampersand character, &, indicates ‘Cats in’, since that’s what
matched the regular expression. Thus, this procedure replaces the string ‘Cats in
pajamas’ with ’Cats in red’. If you called this as a function instead of a procedure,
the value it would return would not be ‘Cats in red’ but 1, indicating that a single
substitution had been made.
4-18 Oracle Application Server Developer’s Guide: PL/SQL and ODBC Applications

String Matching and Manipulation
Using the PL/SQL Web Toolkit 4-19

String Matching and Manipulation
4-20 Oracle Application Server Developer’s Guide: PL/SQL and ODBC Applications

Authentication and Se
5

Authentication and Security

In addition to the authentication mechanisms provided by Oracle Application
Server, the PL/SQL cartridge provides two additional levels of authentication
mechanisms. The application server protects documents, virtual paths, and con-
tents generated from the WRB, while the PL/SQL cartridge protects the users log-
ging into the database or the PL/SQL web application itself.

For more information, see the security white paper at the application server devel-
oper’s site (http://technet.oracle.com). This paper describes how to develop secure
PL/SQL web applications.

Contents
■ Dynamic Username/Password Authentication

■ Dynamic Username/Password and the Basic_Oracle Scheme

■ PL/SQL Cartridge and Authentication Server Schemes

■ Custom Authentication

Dynamic Username/Password Authentication
In this scheme, access is controlled by the database itself; this scheme is suitable for
an application that does not want to control the access on its own.

In the database access descriptor (DAD) form, enter valid username and password
parameters values, but uncheck the Store Username and Password in the DAD
checkbox. Thus, the users will be able to log into different schemas (database
accounts) using the same PL/SQL cartridge/DAD combination. Users will be
prompted with a dialog box in the browser to provide username and password
information. This prompting happens during the authorization callback, and the
curity 5-1

Dynamic Username/Password and the Basic_Oracle Scheme
user-supplied information will be used to log into the database schema that
belongs to the given username/password.

This scheme alleviates the problem of creating multiple PL/SQL cartridge/DAD
combinations (DCDs in version 2.0) for multiple users, and it enables developers to
write applications that access data from different schemas; the schemas correspond
to the given username/password.

This is suitable for applications where multiple users with their own database
accounts interact through the web applications. For example, for an intranet appli-
cation serving 100 employees within that company, version 2.0 of the web server
required 100 DCDs to be created with 100 different usernames and passwords,
whereas in version 3.0 and later you just need to create one PL/SQL cartridge/
DAD combination with no username and password.

Dynamic Username/Password and the Basic_Oracle Scheme
The basic_oracle scheme is a security scheme that enables you to validate users
against an Oracle database. See the Oracle Application Server Security Guide for
details.

Generally, you should use the basic_oracle scheme only for pages that do not use
the dynamic username/password feature. In other words, you can use the
basic_oracle scheme with PL/SQL cartridges when the DAD associated with the
cartridge contains a username/password. The reason for this is that both methods
use the database to authenticate the user and there could potentially be a conflict.

One reason that you might want to use the basic_oracle scheme in addition to
dynamic username/password is if you need to validate users based on database
roles. The basic_oracle scheme can authenticate users based on roles.

To do this, ensure that the basic_oracle scheme's username/password combination
is going to be used for the PLSQL cartridge connection and also that scheme has all
the necessary application code.

See the next section for information on how to specify PL/SQL cartridge virtual
paths in security schemes. This is important because PL/SQL is case-insensitive
while virtual paths are case-sensitive.

PL/SQL Cartridge and Authentication Server Schemes
You can use the authentication server schemes (such as basic, digest, IP-based
restrictions, or domain-based restrictions) to protect the virtual paths that invoke
the PL/SQL cartridges. The basic and digest schemes require the user to enter a
5-2 Oracle Application Server Developer’s Guide: PL/SQL and ODBC Applications

PL/SQL Cartridge and Authentication Server Schemes
username and password, while the IP and domain schemes allow or restrict the
user based on the user’s IP address or domain name.

To associate virtual paths with schemes, use the Virtual Path page for each car-
tridge in the Oracle Application Server Manager. (You add usernames, group
names, and realms to schemes using the Web Security pages in the Oracle Applica-
tion Server Manager.)

Because virtual paths are case-sensitive but PL/SQL procedure names are not, you
should follow these guidelines when associating schemes with virtual paths for PL/
SQL cartridges so that you do not expose any security risks:

■ Protect all the stored procedures associated with a virtual path; do not protect
just some stored procedures in a virtual path by qualifying the * wildcard char-
acter in the stored procedure component of the virtual path.

For example, if a PL/SQL cartridge is associated with the /myApp/hr virtual
path, you should protect all the stored procedures by specifying /myApp/hr/*
as the virtual path to protect. Do not specify something such as /myApp/hr/sal-
ary* to protect only procedures that begin with “salary”. If you do, then when
someone enters /myApp/hr/SALARY_USA as the virtual path, it would bypass
authentication schemes associated with the virtual path because “SALARY”
does not match “salary” in terms of case.

The portion of the virtual path up to, but not including, the stored procedure
name is case-sensitive but the stored procedure name is not. This prevents
users from entering /MYAPP/HR/SALARY_USA to run the SALARY_USA pro-
cedure because the dispatcher component of the application server does not
match /MYAPP/HR with /myApp/hr.

Figure 5–1 Accounting for case when protecting virtual paths

■ If you must protect only some procedures in a virtual path, use custom authen-
tication with the PER_PACKAGE option. See the next section for details on cus-
tom authentication.

Virtual path: /myApp/hr/salary_usa

Case-sensitive

PL/SQL procedure name
Not case-sensitive

Path associated with
a PL/SQL cartridge
Authentication and Security 5-3

Custom Authentication
Custom Authentication
Custom authentication is suitable for applications that want to control the access
themselves (that is, within the application itself). The application authenticates the
users in its own level and not within the database level.

Custom authentication needs a static username/password to be stored in the con-
figuration file, and cannot be combined with the dynamic username/password
authentication.

A PL/SQL cartridge uses the username/password provided in the DAD to log into
the database. Once the login is done, authentication control is passed to the applica-
tion, and application-level PL/SQL hooks (callback functions) are called. The imple-
mentations for these callback functions are left to the application developers. The
return value of the callback function determines if the authentication succeeded or
failed: if the function returns TRUE, authentication succeeded. If it returns FALSE,
authentication failed and code in the application is not executed.

The syntax of the authorize function is:

function authorize return boolean;

To enable custom authentication, you have to perform three steps:

1. Set the level of authentication by editing the privcust.sql file

2. Reload the application

3. Implement the authentication function.

If you enable custom authentication but do not define the callback function, you
will get an error in the wrb.log file. Note that in the 3.0 release, the authentication
level was done in the privinit.sql file, which does not exist in the 4.0 release.

You can place the authentication function in different locations, depending on
when it is to be invoked:

■ If you want the same authentication function to be invoked for all users and for
all procedures, change the line in the privcust.sql file to:

owa_sec.set_authorization(OWA_SEC.GLOBAL)

and implement the owa_custom.authorize function in the “oas_public”
schema, which contains the PL/SQL Web Toolkit.

■ If you want a different authentication function to be invoked for each user and
for all procedures, change the line in the privcust.sql file to:
5-4 Oracle Application Server Developer’s Guide: PL/SQL and ODBC Applications

Custom Authentication
owa_sec.set_authorization(OWA_SEC.CUSTOM)

and implement the owa_custom.authorize function in each user’s schema. For
users who do not have that function in their schema, the owa_custom.autho-
rize function in the “oas_public” schema will be invoked instead.

For 3.0 users: if you implemented owa_init.authorize in each user’s schema,
you need to migrate the function to each user’s owa_custom package.

■ If you want the authentication function to be invoked for all users but only for
procedures in a specific package or for anonymous procedures, change the line
in the privcust.sql file to:

owa_sec.set_authorization(OWA_SEC.PER_PACKAGE)

and implement the authorize function in that package in each user’s schema. If
the procedure is not in a package, then the anonymous authorize function is
called instead. Table 5–1 summarizes the values for the parameters.

When you use custom authentication, you can use the subprograms in the owa_sec
package. You should not use owa_sec if you are not using custom authentication.

OWA_SEC.GLOBAL
This feature is new to 4.0.

The owa_custom.authorize function in the “oas_public” schema will be called
whenever the PL/SQL cartridge is invoked.

Table 5–1 Custom authorization

Value for parameter Access control scope Callback function

OWA_SEC.NO_CHECK n/a n/a

OWA_SEC.GLOBAL All packages owa_custom.authorize in the
“oas_public” schema

OWA_SEC.PER_PACKAGESpecified package packageName.authorize in the user’s
schema

OWA_SEC.PER_PACKAGEAnonymous procedures authorize in the user’s schema

OWA_SEC.CUSTOM All packages owa_custom.authorize in the user’s
schema, or, if not found, in the
“oas_public” schema
Authentication and Security 5-5

Custom Authentication
For example, the following authorize function verifies that the user logged in as
“guest” and specified “welcome” as the password and that the first and second
numbers of the IP address of the client are 144 and 25.

create or replace package body owa_custom is
-- Global authorize callback function
-- It is used when the authorization scheme is set to OWA_SEC.GLOBAL

function authorize return boolean is
ip_address owa_util.ip_address;

begin
-- prompt the user for login and password
owa_sec.set_protection_realm('vendors');
ip_address := owa_sec.get_client_ip;
if ((owa_sec.get_user_id = 'guest') and

(owa_sec.get_password = 'welcome') and
(ip_address(1) = 144) and (ip_address(2) = 25)) then
return TRUE;

else
return FALSE;

end if;
end;

begin -- OWA_CUSTOM
owa_sec.set_authorization(OWA_SEC.GLOBAL);

end;

OWA_SEC.PER_PACKAGE
If the request specifies a procedure within a package, the authorize function in the
package is invoked. If the procedure is not within a package, the anonymous autho-
rize function is called.

For example, if the user invokes a procedure called foo.print_page, the foo.autho-
rize function is called to authenticate the user.

create or replace package foo is
procedure print_page;
function authorize return boolean;

end;

create or replace package body foo is
procedure print_page is
begin

htp.print('Hello World');
end;
5-6 Oracle Application Server Developer’s Guide: PL/SQL and ODBC Applications

Custom Authentication
function authorize return boolean is
begin

owa_sec.set_protection_realm('vendors');
if ((owa_sec.get_user_id = 'guest') and

(owa_sec.get_password = 'welcome') then
return TRUE;

else
return FALSE;

end if;
end; -- authorize function

end; -- package body foo

create or replace package body owa_custom is
-- The authorize function in the owa_custom package will not
-- be invoked if the authorization level is set at OWA_SEC.PER_PACKAGE.
begin -- OWA_CUSTOM
owa_sec.set_authorization(OWA_SEC.PER_PACKAGE);
end;

OWA_SEC.CUSTOM
The owa_custom.authorize function in the user’s schema will be called whenever
the PL/SQL cartridge is invoked. This allows you to implement a different autho-
rize function for each user. If the user’s schema does not contain an
owa_custom.authorize function, the PL/SQL cartridge looks for it in the
“oas_public” schema.
Authentication and Security 5-7

Custom Authentication
5-8 Oracle Application Server Developer’s Guide: PL/SQL and ODBC Applications

Transa
6

Transactions

In versions of Oracle Application Server prior to 3.0, a procedure or set of proce-
dures executed through a URI request committed all the changes/transactions
done within that sequence of PL/SQL code. This may not be preferred for certain
situations. For example, in electronic commerce applications, you want users to be
able to add or remove items in their shopping basket without doing a commit
every time the users make a change or invoke a new request. The preferred behav-
ior is to show an updated view of the table with the new uncommitted row values,
and allow the user to commit or abort the transaction.

Oracle Web Application Server 3.0 and Oracle Application Server 4.0 let you do
that: the PL/SQL cartridge in this version supports the transaction service, which
enables you to perform transactions that span several HTTP requests. The transac-
tion service is based on the XA model transactions defined by the X/Open Com-
pany; the PL/SQL cartridge acts as a transactional model client and the database is
used as the resource manager.

Chapter 10 “Enabling Transactions,” of the Oracle Application Server Administration
Guide provides background and configuration information on transactions. You
should read it before reading this chapter.

Contents
■ Mechanics of Transaction Service

■ Example

Mechanics of Transaction Service
Using the transaction service, you associate URIs with the operations on transac-
tions (begin, commit, and rollback). When a user invokes one of these URIs, the cor-
responding transaction operation is performed by the transaction service.
ctions 6-1

Mechanics of Transaction Service
These URIs can be mapped to either stored procedures or PL/SQL source files that
display appropriate pages to the user. For example, the begin transaction URI could
display to the user a list of items to add to his or her shopping cart, the commit
transaction URI could display to the user a list of purchased items, and the rollback
transaction URI could display to the user a page that asks if he wants to drop the
existing shopping cart and start another one.

Between the begin and the commit or rollback URI, the user invokes other URIs
that call procedures to perform some action on the database. These procedures
might or might not belong to a transaction. If the URI belongs to a transaction, the
actions performed by that procedure would be committed or rolled back when the
transaction ends. If the URI does not belong to the transaction, it is not affected by
the transaction, and Oracle Application Server treats it as a regular request
(changes made by that URI are committed upon completion). URIs belonging to a
transaction usually invoke procedures within a package.

The sequence of URIs for a PL/SQL stored procedures within the database when
invoked would look like the following:

-- begin a transaction
http://host:port/myApp/cart1/test.txn_begin

-- the first operation in the transaction
http://host:port/myApp/cart1/test.txn_update1

-- the second operation in the transaction
http://host:port/myApp/cart1/test.txn_update2

-- some more operations

-- commit the transaction
http://host:port/myApp/cart1/test.txn_commit

In the example above, test.begin , test.update1 , test.update2 , and
test.commit are procedures in the test package stored in the database. The
test package marks the transaction boundary. You can give your procedures any
name you like; the names used here are used only for clarification. If you are using
PL/SQL source files, all of the names should have the suffix of “.sql”.

Note: The procedures that are associated with transactions,
including the ones within a transaction, must not call the PL/SQL
statements that commit or roll back transactions. If you do, you
cannot use the transaction service model.
6-2 Oracle Application Server Developer’s Guide: PL/SQL and ODBC Applications

Example
If an error occurs before the commit or rollback transaction, you need to roll back
the transaction by calling the URI associated with the rollback transaction. Here is
an outline of the test.update1 procedure:

procedure test.update1 (...)
begin
 -- update some tables here

exception
 when appropriate_exception then
 owa_util.redirect_URI("/myApp/cart1/test.rollback");
end;

The owa_util.redirect_url procedure generates a Location header in the HTTP
header. You cannot call the rollback transaction procedure directly from within
other procedures.

Example
You could design an electronic commerce application that allows users to add
items to their shopping carts, and the new values are not committed until the user
clicks a Commit button. The example uses the values from the table above.

A transaction begins when the user invokes the URI:

http://host:port/myApp/cart1/txn_demo.begin_URI

The txn_demo.begin_URI procedure could generate an HTML page that displays
to the user a list of items to add to his or her shopping cart. When the user adds an
item to the shopping cart, the page would invoke a procedure that is within the
transaction so that the addition is considered part of the transaction but is not com-
mitted (for example, txn_demo.add_item); the procedure that is invoked could just
add a new row to a table in the database and generate a page that displays the con-
tents of the user’s shopping cart. The page would contain buttons that allow the
user to commit or roll back the transaction. The commit button would invoke the
txn_demo.commit_URI procedure, which could display to the user what he
bought, and the rollback button would invoke the txn_demo.rollback_URI proce-
dure, which could ask the user if he wants to start another shopping cart.
Transactions 6-3

Example
6-4 Oracle Application Server Developer’s Guide: PL/SQL and ODBC Applications

Miscella
7

Miscellaneous

Contents
■ Supported Data Types

■ NLS Extensions

■ Upgrading PL/SQL Cartridge from 3.x to 4.0

Supported Data Types
Because HTTP supports character streams only, the PL/SQL cartridge supports the
following subset of PL/SQL data types.

■ NUMBER

■ VARCHAR2

■ TABLE OF NUMBER

■ TABLE OF VARCHAR2

Records are not supported.

NLS Extensions
The NLS extensions are part of the DAD configuration, and they provide a flexible
infrastructure to request and retrieve values to and from Oracle databases in differ-
ent languages/formats. Even when the database is configured with other NLS set-
tings, all the conversions are handled implicitly by the database and the PL/SQL
cartridge.

For example, if you have a database that is configured with US$ for NLS Currency
but you want to present the values in Japanese Yen to the user, all you need to do is
neous 7-1

NLS Extensions
set NLS Currency to Japanese Yen. When the data is retrieved from the database, it
will be presented as Japanese Yen.

The PL/SQL cartridge supports all the NLS extensions supported by the Oracle
database. Versions of PL/SQL cartridge prior to Oracle Web Application Server 3.0
supported only the NLS_LANGUAGE parameter. This parameter was used by the
cartridge to derive the NLS_LANGUAGE, NLS_TERRITORY, and NLS_CHARSET
parameters.

Oracle Web Application Server 3.0 and Oracle Application Server 4.0 support these
NLS extensions:

■ NLS_DATE_FORMAT specifies the format to print dates in the client browser.

■ NLS_DATE_LANGUAGE specifies the language to print day and month
names in the client browser.

■ NLS_SORT specifies the type of sort to use when sorting within the database.

■ NLS_NUMERIC_CHARACTERS specifies the decimal character and the group-
ing separator character.

■ NLS_CURRENCY specifies the local currency system to print monetary values
in the client browser.

■ NLS_ISO_CURRENCY specifies the ISO currency symbol.

■ NLS_CALENDAR specifies the calendar system to print dates in the client
browser.

The new NLS extension parameters are optional. If you do not provide values for
these parameters, the default values are derived from the NLS_LANG parameter.
For example, if the value of NLS_LANG is AMERICAN_AMERICA.US7ASCII:

■ the values for NLS_DATE_LANGUAGE and NLS_SORT are derived from the
language part of NLS_LANG, and

■ the values for NLS_CURRENCY, NLS_DATE_FORMAT,
NLS_ISO_CURRENCY, and NLS_NUMERIC_CHARACTERS are derived from
the territory part of NLS_LANG

See the Oracle database documentation for details and valid values for these param-
eters.
7-2 Oracle Application Server Developer’s Guide: PL/SQL and ODBC Applications

Upgrading PL/SQL Cartridge from 3.x to 4.0
Upgrading PL/SQL Cartridge from 3.x to 4.0
If you are upgrading from Oracle Web Application Server version 3.x to Oracle
Application Server version 4.0, you have to perform the following steps in order to
use the PL/SQL cartridge in 4.0:

■ Follow the upgrade instructions in the “Upgrade” chapter in the Oracle Applica-
tion Server Installation Guide. This step converts PL/SQL agents in 3.0 to PL/
SQL cartridges in 4.0 and copies over the 3.0 DADs to the 4.0 environment.

■ Check that you have installed the PL/SQL Web Toolkit in the “oas_public”
common schema. You can install the toolkit when you install Oracle Applica-
tion Server or at a later time using the Oracle Application Server Manager. See
“PL/SQL Web Toolkit Installation” on page 4-2 for details.

■ Save any custom settings in the 3.0 owa_init package.

In the 3.0 toolkit, you could specify custom settings in the owa_init package.
For example, you could specify the time zone and a custom authorize function.

If you want to save your 3.0 custom settings, copy them to the owa_custom
package in 4.0. In 4.0, these settings are specified in the owa_custom package,
not owa_init. Another option is to create a synonym for the owa_init package.

■ Remove the 3.0 toolkit from individual schemas. Make sure that you have
already saved your custom settings in the owa_init package, if any.

■ Update your procedures, if necessary. The following procedures have been
modified.

■ The owa_util.mime_header procedure now takes three parameters, instead
of two.

■ The owa_util.cellsprint procedure has been overloaded to take an addi-
tional output parameter that specifies the number of rows that have been
returned by the query.

Note: All the cartridges within an application should be config-
ured to have the same NLS environment parameters. For example,
NLS_LANG should be set only once for all cartridges within one
single application.
Miscellaneous 7-3

Upgrading PL/SQL Cartridge from 3.x to 4.0
7-4 Oracle Application Server Developer’s Guide: PL/SQL and ODBC Applications

Troublesh
8

Troubleshooting

Contents
■ Problems with Invoking Your PL/SQL Application

■ Looking at Error Messages Generated by the Database

■ Unhandled Exceptions

■ Looking at the HTML Generated by Your PL/SQL Application

■ Tracing Levels

■ Error-Reporting Levels

Problems with Invoking Your PL/SQL Application
If your PL/SQL application cannot be invoked:

■ Make sure that the PL/SQL cartridge is registered with the WRB, and the vir-
tual path for your application maps to the PL/SQL cartridge.

■ Make sure that the listener and the WRB are functioning properly. For example,
check that you can invoke other PL/SQL applications and other cartridges. You
can try invoking the sample PL/SQL applications.

■ Make sure that the PL/SQL subprogram that the URL references is a proce-
dure, not a function.

Looking at Error Messages Generated by the Database
You can look at the database error messages that are returned to the user by setting
the PL/SQL cartridge’s error-reporting level to the highest value, which is 2. See
“Error-Reporting Levels” for details on the different error levels.
ooting 8-1

Unhandled Exceptions
If you have logging turned on for the PL/SQL cartridge, database messages are
logged to the specified log file (wrb.log). To turn logging on for the cartridge, go to
the Application Configuration/Logging page, and check that the PL/SQL cartridge
has logging enabled. Also check the logging level; by setting the logging level to a
higher level, you can get more messages. See Tracing Levels for details.

Unhandled Exceptions
If an error occurs in your PL/SQL procedure, an exception is thrown. If you do not
handle the exception, the error is logged in the log file with the Oracle error stack
and an error message is returned to the user. The error-reporting level controls
what the user sees. See Error-Reporting Levels for details on the different error lev-
els.

Recall that when a procedure exits with an unhandled exception, PL/SQL does not
assign values to OUT parameters and does not commit database work done by
your procedure.

You can avoid unhandled exceptions by coding an OTHERS handler at the top
level of your procedure.

Looking at the HTML Generated by Your PL/SQL Application
The PL/SQL Web Toolkit provides the owa_util.showpage procedure , which
you can use in Oracle Server Manager to print out the output of your application.
The following example prints out the HTML generated by the current_users proce-
dure (which was shown in the Tutorial section).

% svrmgrl
Oracle Server Manager Release 2.3.2.0.0 - Production
Copyright (c) Oracle Corporation 1994, 1995. All rights reserved.
Oracle7 Server Release 7.3.2.1.0 - Production Release
With the distributed option
PL/SQL Release 2.3.2.0.0 - Production
SVRMGR>connect scott/tiger
Connected.
SVRMGR>set serveroutput on
Server Output ON
SVRMGR>execute current_users
Statement processed.
SVRMGR>execute owa_util.showpage
Statement processed.
<HTML>
<HEAD>
8-2 Oracle Application Server Developer’s Guide: PL/SQL and ODBC Applications

Looking at the HTML Generated by Your PL/SQL Application
<TITLE>Current Users</TITLE>
</HEAD>
<BODY>
<H1>Current Users</H1>
<TABLE >
<TR>
<TH>USERNAME</TH>
<TH>USER_ID</TH>
<TH>CREATED</TH>
</TR>
<TR>
<TD ALIGN="LEFT">SYS</TD>
<TD ALIGN="LEFT">0</TD>
<TD ALIGN="LEFT">21-JAN-97</TD>
</TR>
<TR>
<TD ALIGN="LEFT">SYSTEM</TD>
<TD ALIGN="LEFT">5</TD>
<TD ALIGN="LEFT">21-JAN-97</TD>
</TR>
<TR>
<TD ALIGN="LEFT">WWW_USER</TD>
<TD ALIGN="LEFT">11</TD>
<TD ALIGN="LEFT">27-JAN-97</TD>
</TR>
<TR>
<TD ALIGN="LEFT">TRACESVR</TD>
<TD ALIGN="LEFT">8</TD>
<TD ALIGN="LEFT">21-JAN-97</TD>
</TR>
<TR>
<TD ALIGN="LEFT">SCOTT</TD>
<TD ALIGN="LEFT">9</TD>
<TD ALIGN="LEFT">21-JAN-97</TD>
</TR>
<TR>
<TD ALIGN="LEFT">WWW_DBA</TD>
<TD ALIGN="LEFT">10</TD>
<TD ALIGN="LEFT">27-JAN-97</TD>
</TR>
</TABLE>
</BODY>
</HTML>
Troubleshooting 8-3

Tracing Levels
Tracing Levels
You can get detailed information about what the PL/SQL cartridge is doing by
increasing the tracing level. The tracing messages are printed only to the wrb.log
file; they are not sent to the user.

The severity levels range from 0 to 15; low values indicate that only errors are
logged, while high values indicate that warnings and informative messages are
also logged. For example, if you set the severity level to 8, you can see when the car-
tridge has performed the authentication and execution operations. The following
table describes the severity levels:

Table 8–1 Severity levels

Meaning Severity Recommended usage

Fatal errors (for example,
memory errors)

0 0 when a core failure occurred.

Soft errors (for example,
non-fatal input/output
errors)

1 1 when writing to file or database failed.

2 (user-defined)

3 (user-defined)

Warnings (for example,
missing file or missing
configuration section)

4 4 when a configuration error occurred, such as a
file or directory does not exist, or a section in a con-
figuration file is missing.

5 (user-defined)

6 (user-defined)

Tracings (for example,
request has been executed)

7 7 to trace process events, for example, a process’s
initialization, reload, and termination stages.

8 8 to trace thread events, for example, a thread’s ini-
tialization and termination stages.

9 9 to trace request events, for example, a request
has been received.

10 10 for messages that occur while executing a
request.

11 11 for messages that occur while authorizing a
request.

12 (user-defined)
8-4 Oracle Application Server Developer’s Guide: PL/SQL and ODBC Applications

Error-Reporting Levels
Error-Reporting Levels
The PL/SQL cartridge supports three levels of error-reporting. These levels control
what the user sees when an error occurs. In versions older than 3.0, the PL/SQL car-
tridge displayed a static file in case of errors, and it was not possible to identify the
error from the browser.

The error levels are configured as part of the PL/SQL cartridge. Errors are reported
only during the Exec callback function.

Debugging (for example,
variable logging)

13 13 is used for printing debugging variables.

14 (user-defined)

15 (user-defined)

Table 8–2 Error-reporting levels

Error level Description

0 Displays a static file in the client browser when an error occurs. Use this
level if you do not want the users to see any information about the error.

You can specify the file to return to the client. The default file is
$ORAWEB_HOME/../cartx/plsql/install/error.html.

1 Displays the date and time of the error, and also the URL that caused the
error. Use this level if you want to provide only minimal information for
the user to pass it on to web site managers or application developers. The
site manager or developer can use this information to help diagnose the
error in the log file.

If this error level is specified, the error page (if specified) is ignored.

Example:

Error occurred while accessing “/test/myproc” at Mon Jan 6 16:33:32 1997.

Table 8–1 Severity levels

Meaning Severity Recommended usage
Troubleshooting 8-5

Error-Reporting Levels
2 Displays detailed information such as date and time of the error, the URL,
the cartridge name, the procedure that was called, the parameter names
and values, the web server error code, and the database error with a call
stack. This error level is typically used only while developing or debug-
ging an application.

Example:

Error occurred at Mon Jan 6 16:33:32 1997
OWS-05101: Agent: exexution failed due to Oracle error 6564
ORA-06564: object show_stats does not exist
ORA-06512: at "SYS.DBMS_DESCRIBE", line 55
ORA-06512: at line 1
OWA SERVICE: OWA_DEFAULT_SERVICE
PROCEDURE: show_stats

Table 8–2 Error-reporting levels

Error level Description
8-6 Oracle Application Server Developer’s Guide: PL/SQL and ODBC Applications

Part II

ODBC Cartridge

Oracle Application Server Developer’s Guide: PL/SQL and ODBC Applications

ODBC Car
9

ODBC Cartridge Overview

The ODBC cartridge uses Open Database Connectivity, an interface enabling appli-
cations to access data in database management systems that use Structured Query
Language (SQL). The ODBC standard defines a vendor-independent interface for
accessing data.

Contents
■ Review of Cartridge Architecture

■ Supported Data Sources

Review of Cartridge Architecture
The Oracle ODBC cartridge is integrated with the Oracle Application Server, creat-
ing a bridge to Oracle and other ODBC databases. The ODBC cartridge uses an
ODBC driver manager and ODBC drivers specific to each database. The ODBC car-
tridge architecture has four components:

■ the ODBC cartridge, a database application that makes the connection to the
ODBC driver

■ a driver manager that implements the ODBC application programming inter-
face, loads drivers, and provides argument checking and state-transition check-
ing

■ the drivers that process ODBC function calls and manage exchanges between
the ODBC cartridge and a data source

■ a data source that contains the information the ODBC cartridge needs about
the database management system, its platform, and the network to be used
tridge Overview 9-1

Supported Data Sources
Supported Data Sources
The ODBC cartridge supports these data sources:

■ Oracle Server

■ Sybase SQL Server Systems

■ INFORMIX-OnLine Dynamic Server database server

■ INFORMIX-SE database server

■ Microsoft SQL Server

For a list of current versions supported go to the Website http://technet.oracle.com.
9-2 Oracle Application Server Developer’s Guide: PL/SQL and ODBC Applications

Using the ODB
10

Using the ODBC Cartridge

Contents
■ Invoking the ODBC Cartridge

■ Special Usage Considerations

Invoking the ODBC Cartridge
To invoke the ODBC cartridge, send an HTTP URL request to the Oracle Applica-
tion Server using this syntax:

http:// hostname:port / odbc / request_mode

where:

■ hostname:port identifies the Oracle Application Server machine.

■ odbc identifies the virtual path to the ODBC cartridge.

■ request_mode identifies the type of request to the cartridge. Valid values are exe-
cute, tableprint, or stringprint. These request modes include parameters spe-
cific to your database, such as data source name. See “Specifying a Request
Mode” on page 11-1.
C Cartridge 10-1

Special Usage Considerations
Special Usage Considerations
1. If a SQL statement refers to a parameter and the parameter is not passed, no

default value is used and you receive an error message.

2. NULL is a reserved keyword and cannot be used as a string value.

3. If a SQL statement refers to a parameter with a value that contains only blanks,
NULL is used as the value of that parameter.
10-2 Oracle Application Server Developer’s Guide: PL/SQL and ODBC Applications

Specifying Modes and
11

Specifying Modes and Datatypes

To use the cartridge, you invoke the cartridge by sending an HTTP URL request. To
do this, you need to know the structure to use for your request and how different
datatypes are supported

Contents
■ Specifying a Request Mode

■ Specifying Datatypes

Specifying a Request Mode
When you invoke the ODBC cartridge you specify one of three request modes:

■ Execute Mode executes the SQL statement you supply but returns no data

■ TablePrint Mode produces the results of the SQL in an HTML table

■ StringPrint Mode produces the result of the SQL as a series of strings

Request Mode Parameters
The request modes use parameters specific to your database. Each type of request
mode uses some combination of the following parameters:

dsn the data source name that you chose while configuring the ODBC
environment.

username is optional, and provides the username to log onto the database

password is optional, and contains the database user’s password to log onto
the database
Datatypes 11-1

Specifying a Request Mode
Input parameters identify the location where a value is to be placed in the SQL
statement. To specify input parameters, precede the parameter name with a colon
(:) and supply a value corresponding to this name.

Use this syntax to specify the value for an input parameter in the URL request:

input_parameter_name[_suf]=input_parameter_value

where input_parameter_name is the input parameter name and[_suf] is the
optional suffix for specifying the datatype explicitly. input_parameter_value
uses a format based on the datatype categories:

■ char = xxxxxxx (depends on the length)

■ integer = nnnnn (number of digits depends on the precision)

■ decimal = nnnn.nnnn (depends on precision and scale)

■ timestamp = yyyy-mm-dd hh:mm:ss.[fff]

■ binary = hexadecimal string in which two characters represent a byte

See “Specifying Datatypes” on page 11-4 for information about using suffixes to
specify the datatype explicitly.

In this example of a SQL statement in a URL request, the :name input parameter
has a corresponding value of Scott Champion, the :age input parameter has a corre-
sponding value of 26, and the :department input parameter has a corresponding
value of IT:

http://mark1:8888/odbc/execute?dsn=syb10&username=scott&password=tiger
&sql=insert+into+emp+values(:name,:age,:department)
&name=Scott+Champion&age=26&department=IT

sql contains the ODBC SQL string modified to URL form, and includes
input parameters.

outputstring specifies the printf style used to output the results. Specify the map-
ping from row data into the string using the syntax %n where n is
the column number to be inserted.

maxrows is optional and indicates the maximum number of rows to display.
The default is 25 rows.

minrows is optional and indicates the minimum number of rows to display.
The default is 0.
11-2 Oracle Application Server Developer’s Guide: PL/SQL and ODBC Applications

Specifying a Request Mode
Execute Mode
In Execute mode the SQL statement you supply is executed, but no data is
returned. You receive only notification of the request’s success or failure. Use this
mode for DDL operations and DML inserts and updates.

The parameters for Execute mode are:

■ dsn

■ username

■ password

■ sql

Here is an example of a URL invoking the ODBC cartridge to connect to an Oracle7
database using Execute mode:

http://mark1:8888/odbc/execute?dsn=orcl7&username=scott
&password=tiger&sql=insert+into+emp+values(:name,:age,:dept)
&name=Hamilton&age=26&dept=IT

TablePrint Mode
TablePrint mode produces the results of the SQL statement in an HTML table. Valid
parameters are:

■ dsn

■ username

■ password

■ sql

■ maxrows

■ minrows

Here is an example of a URL invoking the ODBC cartridge using TablePrint mode:

http://mark1:8888/odbc/tableprint?dsn=orcl7&username=scott&password=tiger
&sql=select+*+from+emp+where+deptno=:department
&department=IT&maxrows=7
Specifying Modes and Datatypes 11-3

Specifying Datatypes
StringPrint Mode
StringPrint mode produces the result of the SQL statement as a series of strings, as
if the values for each row were parameters to a printf string supplied by the
requester. Valid parameters are:

■ dsn

■ username

■ password

■ sql

■ outputstring

■ maxrows

Here is an example of a URL invoking the ODBC cartridge using StringPrint mode:

http://mark1:8888/odbc/stringprint?dsn=orcl7&username=scott&password=tiger
&sql=select+name,age+from+emp+where+deptno=:department
&department=IT&outputstring=Employee+%1+is+%2+years+old.&maxrows=7

Specifying Datatypes
Different databases use different SQL datatypes. When specifying the value for an
input parameter in the sql portion of a URL request, you can use a suffix to specify a
specific datatype for the parameter.

If you do not specify a suffix, the ODBC cartridge accepts the input parameters as
string literals and sends them to the ODBC driver as such. The cartridge relies on
the ability of your ODBC driver and the target database to handle implicit conver-
sions of the string literals to the appropriate datatype. If the ODBC driver or target
database cannot handle the implicit datatype conversion, an error condition results.
To ensure datatypes are converted correctly, specify the datatype of your input
parameter values using the datatype suffix.

This example uses suffixes to specify the datatypes explicitly for each input parame-
ter in the URL request. In this example, name_char specifies the CHAR datatype,
age_intg specifies the INTEGER dataype, and dept_char specifies the CHAR datatype:

http://mark1:8888/odbc/
execute?sql=insert+into+emp+values(:name_char,:age_intg,:dept_char)
&name_char=Scott&age_intg=30&dept_char=IT

Look up the datatype information pertaining to your target database:
11-4 Oracle Application Server Developer’s Guide: PL/SQL and ODBC Applications

Specifying Datatypes
■ Specifying Oracle datatypes

■ Specifying Sybase datatypes

■ Specifying Informix datatypes

■ Specifying Microsoft SQL Server datatypes

Table 11–1 Specifying Oracle datatypes

Datatype Suffix Comments

CHAR _CHAR Character string of fixed-string length from 1 to 255

DATE _DTME Date/time data: yyyy-mm-dd hh:mm:ss format

FLOAT _FLOT no comments

LONG _LCHR no comments

LONG RAW _LBIN no comments

NUMBER _FLOT no comments

NUMBER(38) _INTG no comments

NUMBER(P) _DECL Signed, exact, numeric value with a precision P

NUMBER(P,S) _DECL Signed, exact, numeric value with a precision P and
scale S

RAW _BINY See restriction (Unix only)

no comments (NT only)

VARCHAR2 _VCHR no comments

Table 11–2 Specifying Sybase datatypes

Datatype Suffix Comments

BINARY _BINY Binary data of fixed length from 1 to 255

BIT _BBIT Single bit binary data with the value of 0 or 1

CHAR _CHAR Character string of fixed-string length from 1 to 255

DATETIME _DTME Date/time data: yyyy-mm-dd hh:mm:ss.fff, yyyy-mm-dd
hh:mm:ss, or yyyy-mm-dd format
Specifying Modes and Datatypes 11-5

Specifying Datatypes
DECIMAL(P S) _DECL Signed, exact, numeric value with a precision P and
scale S

FLOAT _FLOT no comments

IMAGE _LBIN no comments

INT _INTG Range is from (2**31)-1 to -2**31

MONEY _DECL no comments

NCHAR _CHAR Character string of fixed-string length from 1 to 255

NUMERIC(P,S) _NUMR Signed, exact, numeric value with a precision P and
scale S

NVARCHAR _VCHR Variable-length character string with a string length
of from 1 to 255 characters

REAL _REAL no comments

SMALLDATETIME _DTME Date/time data

SMALLINT _SINT Range is from -32768 to 32767

SMALLMONEY _DECL no comments

SYSNAME _VCHR no comments

TEXT _LCHR no comments

TIMESTAMP _VBIN no comments

TINYINT _TINT Range is from 0 to 255

VARBINARY _VBIN no comments

VARCHAR _VCHR no comments

Table 11–3 Specifying Informix datatypes

Datatype Suffix Comments

BYTE _LBIN Datatype used only by INFORMIX-OnLine

CHAR _CHAR no comments

DATE _DATE Date data: yyyy-mm-dd format

DATETIME _DTME Date/time data: yyyy-mm-dd hh:mm:ss:fff format

Table 11–2 Specifying Sybase datatypes

Datatype Suffix Comments
11-6 Oracle Application Server Developer’s Guide: PL/SQL and ODBC Applications

Specifying Datatypes
DECIMAL(P,S) _DECL no comments

DECIMAL(P) _DUBL no comments

FLOAT _DUBL no comments

INTEGER _INTG no comments

INTERVAL _CHAR no comments

MONEY _DECL no comments

SERIAL _INTG no comments

SMALLFLOAT _REAL no comments

SMALLINT _SINT Range is from -32768 to 32767

TEXT _LCHR Datatype used only by INFORMIX-OnLine

VARCHAR _VCHR Datatype used only by INFORMIX-OnLine

Table 11–4 Specifying Microsoft SQL Server datatypes

Datatype Suffix Comments

BINARY _BINY Binary data of fixed length from 1 to 255

BIT _BBIT Single bit binary data

CHAR _CHAR Character string of fixed-string length from 1 to 255

DATETIME _DTME Date/time data: yyyy-mm-dd hh:mm:ss.fff, yyyy-mm-dd
hh:mm:ss, or yyyy-mm-dd format

DECIMAL _DECL no comments

FLOAT _FLOT no comments

IMAGE _LBIN no comments

INT _INTG no comments

MONEY _DECL no comments

NUMERIC _NUMR no comments

REAL _REAL no comments

SMALLDATETIME _DTME no comments

Table 11–3 Specifying Informix datatypes

Datatype Suffix Comments
Specifying Modes and Datatypes 11-7

Specifying Datatypes
SMALLINT _SINT Range is from -32768 to 32767

SMALLMONEY _DECL no comments

SYSNAME _VCHR no comments

TEXT _LCHR no comments

TIMESTAMP _VBIN no comments

TINYINT _TINT no comments

VARBINARY _VBIN no comments

VARCHAR _VCHR no comments

Table 11–4 Specifying Microsoft SQL Server datatypes

Datatype Suffix Comments
11-8 Oracle Application Server Developer’s Guide: PL/SQL and ODBC Applications

Index

A
applications

PL/SQL cartridges, adding, 3-2
architecture

ODBC cartridge, 9-1
authentication

PL/SQL cartridge, 5-1, 5-4
authentication server security schemes, 5-2
authorization, 3-20
authorization, custom

PL/SQL cartridge, 5-5
authorize function

PL/SQL cartridge, 5-4

B
basic_oracle security scheme

PL/SQL cartridge, 5-2

C
callback functions

authentication functions, 5-4
cookies

PL/SQL cartridge, 4-5, 4-9
PL/SQL Web Toolkit, 4-9

custom authentication
enabling, 5-4
PL/SQL cartridge, 5-4
values, 5-5

custom authorization
PL/SQL cartridge, 5-5

D
DAD. See Database Access Descriptor (DAD)
data types supported in PL/SQL cartridge, 7-1
Database Access Descriptor (DAD), 1-2

creating, 2-3, 3-3
dialog box, 2-4

datatypes
specifying, 11-4

differences in 4.0
transaction service, 6-1

Download form, 4-15
dynamic username/password security scheme

PL/SQL cartridge, 5-2

E
error messages

generated by database, 8-1
error-reporting levels in the PL/SQL cartridge, 8-5
exceptions, unhandled, 8-2
exec function

errors reported, 8-5
Execute, 11-3
execute mode, 11-3
execution, 3-20

F
file privcust.sql, 5-4
foo.authorize function, 5-6
functions

authorize, 5-4
foo.authorize, 5-6
Index-1

owa_custom.authorize, 5-4

H
HTML

extending, 4-10
generated by PL/SQL application, 8-2

HTML elements
attributes, 4-8

I
ICX service

PL/SQL cartridge, 4-10
Informix datatypes, 11-6
initialization, 3-20

L
listener port numbers

and PL/SQL agents, 3-10
LONG data type, 4-10

M
Microsoft SQL server datatypes, 11-7

N
NLS

extensions in PL/SQL cartridge, 7-1
NLS extensions, 7-1

O
oas_public schema, 4-2
ODBC cartridge

invoking, 11-1
request mode, 11-1
specifying datatypes, 11-4

Oracle database files, 2-2
Oracle datatypes, 11-5
ORACLE_HOME directory, 2-2
ORACLE_SID field, 2-4
overloaded procedures

PL/SQL cartridge, 3-10

overview
PL/SQL cartridge, 1-1

owa_custom.authorize function, 5-4
owa_pattern.change function or procedure, 4-18
owa_pattern.match function, 4-17
OWA_SEC.CUSTOM variable, 5-7
OWA_SEC.GLOBAL variable, 5-5
OWA_SEC.PER_PACKAGE variable, 5-6
owa_sec.set_authorization procedure, 5-4
owa_util.showpage procedure, 8-2
owains.sql, 4-2

P
packages

htf package, 4-4
htp package, 4-4
PL/SQL cartridge

extending htp and htf packages, 4-10
installing, 2-3
owa package, 4-4
owa_content package, 4-5
owa_cookie package, 4-5
owa_custom package, 4-5
owa_image package, 4-4, 4-6
owa_init package, 7-3
owa_opt_lock package, 4-5
owa_pattern, 4-4
owa_sec package, 4-4
owa_text package, 4-4
owa_util package, 4-4

parameters
NLS extensions, 7-2

physical path
for PL/SQL cartridge, 3-3
for PL/SQL source files, 3-19

PL/SQL agents
and listener port numbers, 3-10

PL/SQL application
adding, 3-1
adding and invoking, 3-1
configuring, 3-7
HTML generated, 8-2

PL/SQL arrays
and overloading, 3-11
Index-2

PL/SQL cartridge
adding applications and cartridges, 3-2
and ICX, 4-10
authentication and security, 5-1
cookies, 4-9
creating a DAD, 2-3
custom authentication, 5-4
DAD, 1-2
data types supported, 7-1
dynamic username/password

authentication, 5-1
error-reporting levels, 8-5
executing SQL files, 3-18
installing packages, 2-3
invoking, 3-1, 3-8
life cycle, 3-20
LONG data type, and, 4-10
NLS extensions, 7-1
overloaded procedures, 3-10
overview, 1-1
packages

extending htp and htf packages, 4-10
htf package, 4-4
htp, 4-4
owa, 4-4
owa_content, 4-5
owa_cookie, 4-5
owa_custom, 4-5
owa_image, 4-4, 4-6
owa_init, 7-3
owa_opt_lock, 4-5
owa_pattern, 4-4
owa_sec, 4-4, 5-5
owa_text, 4-4
owa_util, 4-4

parameters
passing to PL/SQL source files, 3-19
positional, 3-17

parameters passed to subprograms, 4-8
request processing, 1-3
severity levels, 8-4
string matching and manipulation, 4-17
tracing levels, 8-4
transactions, 6-1

example, 6-3

troubleshooting, 8-1
tutorial, 2-1
upgrading, 7-3
URL to invoke the PL/SQL cartridge, 1-1
username/password authentication, 5-1
using the PL/SQL Web Toolkit, 4-1
variables with multiple values, 3-12

PL/SQL Parameters form, 3-8
PL/SQL table in PL/SQL cartridge, 3-12
PL/SQL Web Toolkit

attributes to HTML tags, 4-8
common schema, 4-1
customizing, 4-10
extensions to packages, 4-10
ICX, 4-10
Install form, 4-3
installing, 4-2
packages, 4-4
parameter names, 4-8
PL/SQL cartridge and applet, 4-8
sessions/cookies, 4-9
string matching and manipulation, 4-17

privcust.sql file, 5-4
protection

in PL/SQL cartridge, 5-1

R
request mode parameters, 11-1

S
security

authentication server schemes, 5-2
in PL/SQL cartridge, 5-1

sessions
PL/SQL Web Toolkit, 4-9

severity levels
PL/SQL cartridge, 8-4

shutdown, 3-21
specifying datatypes, 11-4
SQL files

executing, 3-18
stored procedures

creating, 2-2
Index-3

invoking with URLs, 6-1
stringprint mode, 11-4
strings

matching and manipulating in the PL/SQL
cartridge, 4-17

Sybase datatypes, 11-5

T
tableprint mode, 11-3
tracing levels

PL/SQL cartridge, 8-4
transaction service

PL/SQL cartridge, 6-1
example, 6-3

troubleshooting
PL/SQL cartridge, 8-1

tutorial
PL/SQL cartridge, 2-1

U
unhandled exceptions, 8-2
upgrading

PL/SQL cartridge, 7-3
Upload form, 4-12
URLs

transaction service, 6-1

V
virtual path

for PL/SQL cartridge, 3-3
protecting, 5-3
Index-4

	1 PL/SQL Cartridge Overview
	Configuration Information
	Communication Path
	POST and GET Methods

	2 Tutorial
	1. Creating and Loading the Stored Procedure onto ...
	2. Creating an Application and its Components
	3. Reloading
	4. Creating an HTML Page to Invoke the Application...

	3 Adding and Invoking PL/SQL Applications
	Adding PL/SQL Applications
	Configuring PL/SQL Applications
	Invoking a PL/SQL Cartridge
	Overloaded Procedures
	Variables with Multiple Values
	Flexible Parameter Passing
	Positional Parameters
	Executing SQL Files
	Life Cycle of the PL/SQL Cartridge

	4 Using the PL/SQL Web Toolkit
	Common Schema
	PL/SQL Web Toolkit Installation
	Packages in the Toolkit
	Conventions for Parameter Names in the Toolkit
	Attributes to HTML Tags
	PL/SQL Cartridge and Applets
	Sessions/Cookies
	LONG Data Type
	Inter-Cartridge Exchange (ICX)
	Extensions to the htp and htf Packages
	File Upload and Download
	String Matching and Manipulation

	5 Authentication and Security
	Dynamic Username/Password Authentication
	Dynamic Username/Password and the Basic_Oracle Sch...
	PL/SQL Cartridge and Authentication Server Schemes...
	Custom Authentication

	6 Transactions
	Mechanics of Transaction Service
	Example

	7 Miscellaneous
	Supported Data Types
	NLS Extensions
	Upgrading PL/SQL Cartridge from 3.x to 4.0

	8 Troubleshooting
	Problems with Invoking Your PL/SQL Application
	Looking at Error Messages Generated by the Databas...
	Unhandled Exceptions
	Looking at the HTML Generated by Your PL/SQL Appli...
	Tracing Levels
	Error-Reporting Levels

	9 ODBC Cartridge Overview
	Review of Cartridge Architecture
	Supported Data Sources

	10 Using the ODBC Cartridge
	Invoking the ODBC Cartridge
	Special Usage Considerations

	11 Specifying Modes and Datatypes
	Specifying a Request Mode
	Specifying Datatypes

	Index

